Antioxidant and Anti-Obesity Properties of Acidic and Alkaline Seaweed Extracts Adjusted to Different pH Levels.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2025-01-12 DOI:10.3390/md23010035
Sakhi Ghelichi, Mona Hajfathalian, Sara Falcione, Charlotte Jacobsen
{"title":"Antioxidant and Anti-Obesity Properties of Acidic and Alkaline Seaweed Extracts Adjusted to Different pH Levels.","authors":"Sakhi Ghelichi, Mona Hajfathalian, Sara Falcione, Charlotte Jacobsen","doi":"10.3390/md23010035","DOIUrl":null,"url":null,"abstract":"<p><p>This research examined antioxidant and anti-obesity effects of <i>Palmaria palmata</i> extracts obtained through acidic or alkaline treatments and subsequent pH adjustments. After two rounds of acidic or alkaline extraction, the extracts were separated from biomass and adjusted to different pH values: for acidic extracts, pH 3 (no adjustment), pH 6, pH 9, and pH 12; for alkaline extracts, pH 12 (no adjustment), pH 9, pH 6, and pH 3. The findings revealed that extraction medium as well as subsequent pH adjustments significantly influenced composition of the extracts in terms of protein content and recovery, amino acids, and phenolic compounds (<i>p</i> < 0.05). Acidic conditions produced extracts with potent radical scavenging, especially at pH 6 (IC<sub>50</sub> = 0.30 ± 0.04 mg.mL<sup>-1</sup>), while alkaline conditions favored metal chelating, with the highest Fe<sup>2+</sup> chelation at pH 12 (IC<sub>50</sub> = 0.65 ± 0.03 mg.mL<sup>-1</sup>). Moreover, extracts showed inhibitory activities against porcine pancreatic lipase and α-amylase, with the acidic extract at pH 9 showing the best anti-obesity properties (IC<sub>50</sub> = 5.38 ± 0.34 mg.mL<sup>-1</sup> for lipase and IC<sub>50</sub> = 5.79 ± 0.30 mg.mL<sup>-1</sup> for α-amylase). However, the highest α-amylase activity was in the alkaline extract at pH 12 (IC<sub>50</sub> = 3.05 ± 0.66 mg.mL<sup>-1</sup>). In conclusion, adjusting the pH of seaweed extracts notably influences their bioactive properties, likely due to changes in the reactivity and interactions of bioactive compounds such as peptides, carbohydrates, and polyphenols.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23010035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research examined antioxidant and anti-obesity effects of Palmaria palmata extracts obtained through acidic or alkaline treatments and subsequent pH adjustments. After two rounds of acidic or alkaline extraction, the extracts were separated from biomass and adjusted to different pH values: for acidic extracts, pH 3 (no adjustment), pH 6, pH 9, and pH 12; for alkaline extracts, pH 12 (no adjustment), pH 9, pH 6, and pH 3. The findings revealed that extraction medium as well as subsequent pH adjustments significantly influenced composition of the extracts in terms of protein content and recovery, amino acids, and phenolic compounds (p < 0.05). Acidic conditions produced extracts with potent radical scavenging, especially at pH 6 (IC50 = 0.30 ± 0.04 mg.mL-1), while alkaline conditions favored metal chelating, with the highest Fe2+ chelation at pH 12 (IC50 = 0.65 ± 0.03 mg.mL-1). Moreover, extracts showed inhibitory activities against porcine pancreatic lipase and α-amylase, with the acidic extract at pH 9 showing the best anti-obesity properties (IC50 = 5.38 ± 0.34 mg.mL-1 for lipase and IC50 = 5.79 ± 0.30 mg.mL-1 for α-amylase). However, the highest α-amylase activity was in the alkaline extract at pH 12 (IC50 = 3.05 ± 0.66 mg.mL-1). In conclusion, adjusting the pH of seaweed extracts notably influences their bioactive properties, likely due to changes in the reactivity and interactions of bioactive compounds such as peptides, carbohydrates, and polyphenols.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信