{"title":"RNase T2 deficiency promotes TLR13-dependent replenishment of tissue-protective Kupffer cells.","authors":"Ryota Sato, Kaiwen Liu, Takuma Shibata, Katsuaki Hoshino, Kiyoshi Yamaguchi, Toru Miyazaki, Ryosuke Hiranuma, Ryutaro Fukui, Yuji Motoi, Yuri Fukuda-Ohta, Yun Zhang, Tatjana Reuter, Yuko Ishida, Toshikazu Kondo, Tomoki Chiba, Hiroshi Asahara, Masato Taoka, Yoshio Yamauchi, Toshiaki Isobe, Tsuneyasu Kaisho, Yoichi Furukawa, Eicke Latz, Kohta Nakatani, Yoshihiro Izumi, Yunzhong Nie, Hideki Taniguchi, Kensuke Miyake","doi":"10.1084/jem.20230647","DOIUrl":null,"url":null,"abstract":"<p><p>Lysosomal stress due to the accumulation of nucleic acids (NAs) activates endosomal TLRs in macrophages. Here, we show that lysosomal RNA stress, caused by the lack of RNase T2, induces macrophage accumulation in multiple organs such as the spleen and liver through TLR13 activation by microbiota-derived ribosomal RNAs. TLR13 triggered emergency myelopoiesis, increasing the number of myeloid progenitors in the bone marrow and spleen. Splenic macrophages continued to proliferate and mature into macrophages expressing the anti-inflammatory cytokine IL-10. In the liver, TLR13 activated monocytes/macrophages to proliferate and mature into monocyte-derived KCs (moKCs), in which, the liver X receptor (LXR) was activated. In accumulated moKCs, tissue clearance genes such as MerTK, AXL, and apoptosis inhibitor of macrophage (AIM) were highly expressed, while TLR-dependent production of proinflammatory cytokines was impaired. Consequently, Rnaset2-/- mice were resistant to acute liver injuries elicited by acetaminophen (APAP) and LPS with D-galactosamine. These findings suggest that TLR13 activated by lysosomal RNA stress promotes the replenishment of tissue-protective Kupffer cells.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 3","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20230647","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lysosomal stress due to the accumulation of nucleic acids (NAs) activates endosomal TLRs in macrophages. Here, we show that lysosomal RNA stress, caused by the lack of RNase T2, induces macrophage accumulation in multiple organs such as the spleen and liver through TLR13 activation by microbiota-derived ribosomal RNAs. TLR13 triggered emergency myelopoiesis, increasing the number of myeloid progenitors in the bone marrow and spleen. Splenic macrophages continued to proliferate and mature into macrophages expressing the anti-inflammatory cytokine IL-10. In the liver, TLR13 activated monocytes/macrophages to proliferate and mature into monocyte-derived KCs (moKCs), in which, the liver X receptor (LXR) was activated. In accumulated moKCs, tissue clearance genes such as MerTK, AXL, and apoptosis inhibitor of macrophage (AIM) were highly expressed, while TLR-dependent production of proinflammatory cytokines was impaired. Consequently, Rnaset2-/- mice were resistant to acute liver injuries elicited by acetaminophen (APAP) and LPS with D-galactosamine. These findings suggest that TLR13 activated by lysosomal RNA stress promotes the replenishment of tissue-protective Kupffer cells.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.