Rezky Anggakusuma, Gemilang Lara Utama, Muhammad Khoirul Zain, Kartini Megasari
{"title":"Reducing the Radioactive Surface Contamination Level of Cobalt-60-Contaminated Material with PVA-Glycerol-EDTA Combination Gel.","authors":"Rezky Anggakusuma, Gemilang Lara Utama, Muhammad Khoirul Zain, Kartini Megasari","doi":"10.3390/gels11010056","DOIUrl":null,"url":null,"abstract":"<p><p>Decommissioning of nuclear facilities can be performed in stages. One of the stages and processes in decontamination is the decontamination process before dismantling or facility area recovery activities. Decontamination can be performed using various methods, primarily physical and chemical. One chemical method involves using a gel made of polymers for decontamination. In this study, a gel consisting of a mixture of 15 g polyvinyl alcohol (PVA), 15 mL of glycerol, and 2 g Na-EDTA was dissolved in 100 mL. The three materials were dissolved in hot conditions until they dissolved, and a gel was formed. The formed gel was applied to the material contaminated by Co-60 with a radioactivity of 81 µCi, as much as 5 µL. The decontamination radioactive efficiency test results range from 53% to 98%, with the highest decontamination efficiency observed on glass media. This study also showed that higher EDTA concentrations can increase the ability of the PVA-glycerol gel to absorb and bind Co. This study also found that decontamination efficiency was influenced by the type of contaminated material and the concentration of EDTA. It can be concluded that gels with a composition of PVA, glycerol, and EDTA can reduce the level of contamination on the surface of materials made of glass, ceramics, and metal plates.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765102/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11010056","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Decommissioning of nuclear facilities can be performed in stages. One of the stages and processes in decontamination is the decontamination process before dismantling or facility area recovery activities. Decontamination can be performed using various methods, primarily physical and chemical. One chemical method involves using a gel made of polymers for decontamination. In this study, a gel consisting of a mixture of 15 g polyvinyl alcohol (PVA), 15 mL of glycerol, and 2 g Na-EDTA was dissolved in 100 mL. The three materials were dissolved in hot conditions until they dissolved, and a gel was formed. The formed gel was applied to the material contaminated by Co-60 with a radioactivity of 81 µCi, as much as 5 µL. The decontamination radioactive efficiency test results range from 53% to 98%, with the highest decontamination efficiency observed on glass media. This study also showed that higher EDTA concentrations can increase the ability of the PVA-glycerol gel to absorb and bind Co. This study also found that decontamination efficiency was influenced by the type of contaminated material and the concentration of EDTA. It can be concluded that gels with a composition of PVA, glycerol, and EDTA can reduce the level of contamination on the surface of materials made of glass, ceramics, and metal plates.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.