Spatiotemporal Evolution of the Water System's Structure and Its Relationship with Urban System Based on Fractal Dimension: A Case Study of the Huaihe River Basin, China.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-01-20 DOI:10.3390/e27010092
Hailong Yu, Bin Yu, Xiangmin Zhang, Yong Fan, Sai Wen, Shanshan Jiao
{"title":"Spatiotemporal Evolution of the Water System's Structure and Its Relationship with Urban System Based on Fractal Dimension: A Case Study of the Huaihe River Basin, China.","authors":"Hailong Yu, Bin Yu, Xiangmin Zhang, Yong Fan, Sai Wen, Shanshan Jiao","doi":"10.3390/e27010092","DOIUrl":null,"url":null,"abstract":"<p><p>The formation and development of cities are inseparable from a certain scale of water resources. The information contained in the morphological structures of cities and water systems is often overlooked. Exploring the spatiotemporal evolution of water system structures (WSS) and urban system structures (USS) can reveal the \"urban-water\" relationship from a new perspective. The Huaihe River Basin (HRB) was selected as the case area, based on the theory of fractal dimensions, grid dimension and multifractal spectrum methods were used to depict the structural evolutionary characteristics of water systems and urban systems from different dimensions. Then, through a comparative analysis of fractal parameters and spectral lines, the characteristics and changing patterns of the \"urban-water\" relationship in the HRB from 1980 to 2019 were revealed. The results indicate the following: (1) The water system structure in the HRB is complex and exhibits distinct scale characteristics, showing improvement overall and at larger scales while continuously degrading at smaller scales. (2) Both the water system and urban system exhibit increasingly complex spatial development characteristics; however, the USS continues to optimize over time, while the WSS experiences degradation. (3) The development patterns of the water system and urban system are significant differences in the HRB. Urban development mainly relies on outward expansion, whereas the water system is primarily characterized by intensive enhancement. (4) Because of the rapid development of urban areas, water scarcity may occur in densely populated urban areas or larger cities in the future. The research results can serve as a scientific reference for urban planning and water resource management in the HRB.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010092","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The formation and development of cities are inseparable from a certain scale of water resources. The information contained in the morphological structures of cities and water systems is often overlooked. Exploring the spatiotemporal evolution of water system structures (WSS) and urban system structures (USS) can reveal the "urban-water" relationship from a new perspective. The Huaihe River Basin (HRB) was selected as the case area, based on the theory of fractal dimensions, grid dimension and multifractal spectrum methods were used to depict the structural evolutionary characteristics of water systems and urban systems from different dimensions. Then, through a comparative analysis of fractal parameters and spectral lines, the characteristics and changing patterns of the "urban-water" relationship in the HRB from 1980 to 2019 were revealed. The results indicate the following: (1) The water system structure in the HRB is complex and exhibits distinct scale characteristics, showing improvement overall and at larger scales while continuously degrading at smaller scales. (2) Both the water system and urban system exhibit increasingly complex spatial development characteristics; however, the USS continues to optimize over time, while the WSS experiences degradation. (3) The development patterns of the water system and urban system are significant differences in the HRB. Urban development mainly relies on outward expansion, whereas the water system is primarily characterized by intensive enhancement. (4) Because of the rapid development of urban areas, water scarcity may occur in densely populated urban areas or larger cities in the future. The research results can serve as a scientific reference for urban planning and water resource management in the HRB.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信