Shannon Entropy Computations in Navier-Stokes Flow Problems Using the Stochastic Finite Volume Method.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-01-14 DOI:10.3390/e27010067
Marcin Kamiński, Rafał Leszek Ossowski
{"title":"Shannon Entropy Computations in Navier-Stokes Flow Problems Using the Stochastic Finite Volume Method.","authors":"Marcin Kamiński, Rafał Leszek Ossowski","doi":"10.3390/e27010067","DOIUrl":null,"url":null,"abstract":"<p><p>The main aim of this study is to achieve the numerical solution for the Navier-Stokes equations for incompressible, non-turbulent, and subsonic fluid flows with some Gaussian physical uncertainties. The higher-order stochastic finite volume method (SFVM), implemented according to the iterative generalized stochastic perturbation technique and the Monte Carlo scheme, are engaged for this purpose. It is implemented with the aid of the polynomial bases for the pressure-velocity-temperature (PVT) solutions, for which the weighted least squares method (WLSM) algorithm is applicable. The deterministic problem is solved using the freeware OpenFVM, the computer algebra software MAPLE 2019 is employed for the LSM local fittings, and the resulting probabilistic quantities are computed. The first two probabilistic moments, as well as the Shannon entropy spatial distributions, are determined with this apparatus and visualized in the FEPlot software. This approach is validated using the 2D heat conduction benchmark test and then applied for the probabilistic version of the 3D coupled lid-driven cavity flow analysis. Such an implementation of the SFVM is applied to model the 2D lid-driven cavity flow problem for statistically homogeneous fluid with limited uncertainty in its viscosity and heat conductivity. Further numerical extension of this technique is seen in an application of the artificial neural networks, where polynomial approximation may be replaced automatically by some optimal, and not necessarily polynomial, bases.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010067","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this study is to achieve the numerical solution for the Navier-Stokes equations for incompressible, non-turbulent, and subsonic fluid flows with some Gaussian physical uncertainties. The higher-order stochastic finite volume method (SFVM), implemented according to the iterative generalized stochastic perturbation technique and the Monte Carlo scheme, are engaged for this purpose. It is implemented with the aid of the polynomial bases for the pressure-velocity-temperature (PVT) solutions, for which the weighted least squares method (WLSM) algorithm is applicable. The deterministic problem is solved using the freeware OpenFVM, the computer algebra software MAPLE 2019 is employed for the LSM local fittings, and the resulting probabilistic quantities are computed. The first two probabilistic moments, as well as the Shannon entropy spatial distributions, are determined with this apparatus and visualized in the FEPlot software. This approach is validated using the 2D heat conduction benchmark test and then applied for the probabilistic version of the 3D coupled lid-driven cavity flow analysis. Such an implementation of the SFVM is applied to model the 2D lid-driven cavity flow problem for statistically homogeneous fluid with limited uncertainty in its viscosity and heat conductivity. Further numerical extension of this technique is seen in an application of the artificial neural networks, where polynomial approximation may be replaced automatically by some optimal, and not necessarily polynomial, bases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信