Martine J Barons, Anca M Hanea, Steven Mascaro, Owen Woodberry
{"title":"Reporting Standards for Bayesian Network Modelling.","authors":"Martine J Barons, Anca M Hanea, Steven Mascaro, Owen Woodberry","doi":"10.3390/e27010069","DOIUrl":null,"url":null,"abstract":"<p><p>Reproducibility is a key measure of the veracity of a modelling result or finding. In other research areas, notably in medicine, reproducibility is supported by mandating the inclusion of an agreed set of details into every research publication, facilitating systematic reviews, transparency and reproducibility. Governments and international organisations are increasingly turning to modelling approaches in the development and decision-making for policy and have begun asking questions about accountability in model-based decision making. The ethical issues of relying on modelling that is biased, poorly constructed, constrained by heroic assumptions and not reproducible are multiplied when such models are used to underpin decisions impacting human and planetary well-being. Bayesian Network modelling is used in policy development and decision support across a wide range of domains. In light of the recent trend for governments and other organisations to demand accountability and transparency, we have compiled and tested a reporting checklist for Bayesian Network modelling which will bring the desirable level of transparency and reproducibility to enable models to support decision making and allow the robust comparison and combination of models. The use of this checklist would support the ethical use of Bayesian network modelling for impactful decision making and research.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010069","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reproducibility is a key measure of the veracity of a modelling result or finding. In other research areas, notably in medicine, reproducibility is supported by mandating the inclusion of an agreed set of details into every research publication, facilitating systematic reviews, transparency and reproducibility. Governments and international organisations are increasingly turning to modelling approaches in the development and decision-making for policy and have begun asking questions about accountability in model-based decision making. The ethical issues of relying on modelling that is biased, poorly constructed, constrained by heroic assumptions and not reproducible are multiplied when such models are used to underpin decisions impacting human and planetary well-being. Bayesian Network modelling is used in policy development and decision support across a wide range of domains. In light of the recent trend for governments and other organisations to demand accountability and transparency, we have compiled and tested a reporting checklist for Bayesian Network modelling which will bring the desirable level of transparency and reproducibility to enable models to support decision making and allow the robust comparison and combination of models. The use of this checklist would support the ethical use of Bayesian network modelling for impactful decision making and research.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.