{"title":"Quantum Contextual Hypergraphs, Operators, Inequalities, and Applications in Higher Dimensions.","authors":"Mladen Pavičić","doi":"10.3390/e27010054","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum contextuality plays a significant role in supporting quantum computation and quantum information theory. The key tools for this are the Kochen-Specker and non-Kochen-Specker contextual sets. Traditionally, their representation has been predominantly operator-based, mainly focusing on specific constructs in dimensions ranging from three to eight. However, nearly all of these constructs can be represented as low-dimensional hypergraphs. This study demonstrates how to generate contextual hypergraphs in any dimension using various methods, particularly those that do not scale in complexity with increasing dimensions. Furthermore, we introduce innovative examples of hypergraphs extending to dimension 32. Our methodology reveals the intricate structural properties of hypergraphs, enabling precise quantifications of contextuality. Additionally, we investigate several promising applications of hypergraphs in quantum communication and quantum computation, paving the way for future breakthroughs in the field.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010054","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum contextuality plays a significant role in supporting quantum computation and quantum information theory. The key tools for this are the Kochen-Specker and non-Kochen-Specker contextual sets. Traditionally, their representation has been predominantly operator-based, mainly focusing on specific constructs in dimensions ranging from three to eight. However, nearly all of these constructs can be represented as low-dimensional hypergraphs. This study demonstrates how to generate contextual hypergraphs in any dimension using various methods, particularly those that do not scale in complexity with increasing dimensions. Furthermore, we introduce innovative examples of hypergraphs extending to dimension 32. Our methodology reveals the intricate structural properties of hypergraphs, enabling precise quantifications of contextuality. Additionally, we investigate several promising applications of hypergraphs in quantum communication and quantum computation, paving the way for future breakthroughs in the field.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.