Quadratic Forms in Random Matrices with Applications in Spectrum Sensing.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-01-12 DOI:10.3390/e27010063
Daniel Gaetano Riviello, Giusi Alfano, Roberto Garello
{"title":"Quadratic Forms in Random Matrices with Applications in Spectrum Sensing.","authors":"Daniel Gaetano Riviello, Giusi Alfano, Roberto Garello","doi":"10.3390/e27010063","DOIUrl":null,"url":null,"abstract":"<p><p>Quadratic forms with random kernel matrices are ubiquitous in applications of multivariate statistics, ranging from signal processing to time series analysis, biomedical systems design, wireless communications performance analysis, and other fields. Their statistical characterization is crucial to both design guideline formulation and efficient computation of performance indices. To this end, random matrix theory can be successfully exploited. In particular, recent advancements in spectral characterization of finite-dimensional random matrices from the so-called <i>polynomial ensembles</i> allow for the analysis of several scenarios of interest in wireless communications and signal processing. In this work, we focus on the characterization of quadratic forms in unit-norm vectors, with unitarily invariant random kernel matrices, and we also provide some approximate but numerically accurate results concerning a non-unitarily invariant kernel matrix. Simulations are run with reference to a peculiar application scenario, the so-called spectrum sensing for wireless communications. Closed-form expressions for the moment generating function of the quadratic forms of interest are provided; this will pave the way to an analytical performance analysis of some spectrum sensing schemes, and will potentially assist in the rate analysis of some multi-antenna systems.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010063","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quadratic forms with random kernel matrices are ubiquitous in applications of multivariate statistics, ranging from signal processing to time series analysis, biomedical systems design, wireless communications performance analysis, and other fields. Their statistical characterization is crucial to both design guideline formulation and efficient computation of performance indices. To this end, random matrix theory can be successfully exploited. In particular, recent advancements in spectral characterization of finite-dimensional random matrices from the so-called polynomial ensembles allow for the analysis of several scenarios of interest in wireless communications and signal processing. In this work, we focus on the characterization of quadratic forms in unit-norm vectors, with unitarily invariant random kernel matrices, and we also provide some approximate but numerically accurate results concerning a non-unitarily invariant kernel matrix. Simulations are run with reference to a peculiar application scenario, the so-called spectrum sensing for wireless communications. Closed-form expressions for the moment generating function of the quadratic forms of interest are provided; this will pave the way to an analytical performance analysis of some spectrum sensing schemes, and will potentially assist in the rate analysis of some multi-antenna systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信