Recent Advances in Metal-Organic Framework-Based Anticancer Hydrogels.

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-01-18 DOI:10.3390/gels11010076
Preeti Kush, Ranjit Singh, Parveen Kumar
{"title":"Recent Advances in Metal-Organic Framework-Based Anticancer Hydrogels.","authors":"Preeti Kush, Ranjit Singh, Parveen Kumar","doi":"10.3390/gels11010076","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is the second leading cause of death globally and the estimated number of new cancer cases and deaths will be ∼30.2 million and 16.3 million, respectively, by 2040. These numbers cause massive, physical, emotional, and financial burdens to society and the healthcare system that lead to further research for a better and more effective therapeutic strategy to manage cancer. Metal-organic frameworks (MOFs) are promising alternative approaches for efficient drug delivery and cancer theranostics owing to their unique properties and the direct transportation of drugs into cells followed by controlled release, but they suffer from certain limitations like rigidity, poor dispersibility, fragility, aggregation probability, and limited surface accessibility. Therefore, MOFs were conjugated with polymeric hydrogels, leading to the formation of MOF-based hydrogels with abundant absorption sites, flexibility, and excellent mechanical properties. This review briefly describes the different strategies used for the synthesis and characterization of MOF-based hydrogels. Further, we place special emphasis on the recent advances in MOF-based hydrogels used to manage different cancers. Finally, we conclude the challenges and future perspectives of MOF-based hydrogels. We believe that this review will help researchers to develop more MOF-based hydrogels with augmented anticancer effects, enabling the effective management of cancer even without adverse effects.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11010076","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is the second leading cause of death globally and the estimated number of new cancer cases and deaths will be ∼30.2 million and 16.3 million, respectively, by 2040. These numbers cause massive, physical, emotional, and financial burdens to society and the healthcare system that lead to further research for a better and more effective therapeutic strategy to manage cancer. Metal-organic frameworks (MOFs) are promising alternative approaches for efficient drug delivery and cancer theranostics owing to their unique properties and the direct transportation of drugs into cells followed by controlled release, but they suffer from certain limitations like rigidity, poor dispersibility, fragility, aggregation probability, and limited surface accessibility. Therefore, MOFs were conjugated with polymeric hydrogels, leading to the formation of MOF-based hydrogels with abundant absorption sites, flexibility, and excellent mechanical properties. This review briefly describes the different strategies used for the synthesis and characterization of MOF-based hydrogels. Further, we place special emphasis on the recent advances in MOF-based hydrogels used to manage different cancers. Finally, we conclude the challenges and future perspectives of MOF-based hydrogels. We believe that this review will help researchers to develop more MOF-based hydrogels with augmented anticancer effects, enabling the effective management of cancer even without adverse effects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信