Use of Photoreactive Riboflavin and Blue Light Irradiation in Improving Dentin Bonding-Multifaceted Evaluation.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Ping-Ju Chen, Jung-Pei Hsieh, Hsiao-Tzu Chang, Yuh-Ling Chen, Shu-Fen Chuang
{"title":"Use of Photoreactive Riboflavin and Blue Light Irradiation in Improving Dentin Bonding-Multifaceted Evaluation.","authors":"Ping-Ju Chen, Jung-Pei Hsieh, Hsiao-Tzu Chang, Yuh-Ling Chen, Shu-Fen Chuang","doi":"10.3390/jfb16010011","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, photoactivated riboflavin (RF) treatments have been approved to improve resin-dentin bonding by enhancing dentinal collagen crosslinking. This study aimed to evaluate whether RF activated by blue light (BL, 450 nm) strengthens the collagen matrix, increases resistance to enzymatic degradation, and improves adhesion as effectively as ultraviolet A (UVA, 375 nm) activation. Six groups were examined: control (no treatment); RF0.1UV2 (0.1% RF with 2 min of UVA irradiation); RF0.1BL1, RF0.1BL2, RF1BL1, and RF1BL2 (0.1% and 1% RF with 1 or 2 min of BL irradiation). The effects of RF/BL on collagen crosslinking were validated by gel electrophoresis. A nanoindentation test showed that both RF/UVA and RF/BL treatments enhanced the elastic modulus and nanohardness of demineralized dentin. A zymography assay using collagen extracted from demineralized dentin also revealed significant matrix metalloproteinase-2 inhibition across all RF treatments. Microtensile bond strength (µTBS) tests conducted both post-treatment and after 7-day enzymatic degradation showed that three RF0.1 groups (RF0.1UV2, RF0.1BL1, and RF0.1BL2) maintained high µTBS values after degradation, while RF0.1BL1 generated a significantly thicker hybrid layer compared to other groups. These findings suggest that RF/BL is as effective as RF/UVA in crosslinking dentinal collagen and resisting enzymatic degradation, with 0.1% RF proving superior to 1% RF in enhancing dentin bonding.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16010011","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, photoactivated riboflavin (RF) treatments have been approved to improve resin-dentin bonding by enhancing dentinal collagen crosslinking. This study aimed to evaluate whether RF activated by blue light (BL, 450 nm) strengthens the collagen matrix, increases resistance to enzymatic degradation, and improves adhesion as effectively as ultraviolet A (UVA, 375 nm) activation. Six groups were examined: control (no treatment); RF0.1UV2 (0.1% RF with 2 min of UVA irradiation); RF0.1BL1, RF0.1BL2, RF1BL1, and RF1BL2 (0.1% and 1% RF with 1 or 2 min of BL irradiation). The effects of RF/BL on collagen crosslinking were validated by gel electrophoresis. A nanoindentation test showed that both RF/UVA and RF/BL treatments enhanced the elastic modulus and nanohardness of demineralized dentin. A zymography assay using collagen extracted from demineralized dentin also revealed significant matrix metalloproteinase-2 inhibition across all RF treatments. Microtensile bond strength (µTBS) tests conducted both post-treatment and after 7-day enzymatic degradation showed that three RF0.1 groups (RF0.1UV2, RF0.1BL1, and RF0.1BL2) maintained high µTBS values after degradation, while RF0.1BL1 generated a significantly thicker hybrid layer compared to other groups. These findings suggest that RF/BL is as effective as RF/UVA in crosslinking dentinal collagen and resisting enzymatic degradation, with 0.1% RF proving superior to 1% RF in enhancing dentin bonding.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信