Md Mohosin Rana, Cigdem Demirkaya, Hector De la Hoz Siegler
{"title":"Beyond Needles: Immunomodulatory Hydrogel-Guided Vaccine Delivery Systems.","authors":"Md Mohosin Rana, Cigdem Demirkaya, Hector De la Hoz Siegler","doi":"10.3390/gels11010007","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccines are critical for combating infectious diseases, saving millions of lives worldwide each year. Effective immunization requires precise vaccine delivery to ensure proper antigen transport and robust immune activation. Traditional vaccine delivery systems, however, face significant challenges, including low immunogenicity and undesirable inflammatory reactions, limiting their efficiency. Encapsulating or binding vaccines within biomaterials has emerged as a promising strategy to overcome these limitations. Among biomaterials, hydrogels have gained considerable attention for their biocompatibility, ability to interact with biological systems, and potential to modulate immune responses. Hydrogels offer a materials science-driven approach for targeted vaccine delivery, addressing the shortcomings of conventional methods while enhancing vaccine efficacy. This review examines the potential of hydrogel-based systems to improve immunogenicity and explores their dual role as immunomodulatory adjuvants. Innovative delivery methods, such as microneedles, patches, and inhalable systems, are discussed as minimally invasive alternatives to traditional administration routes. Additionally, this review addresses critical challenges, including safety, scalability, and regulatory considerations, offering insights into hydrogel-guided strategies for eliciting targeted immune responses and advancing global immunization efforts.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11010007","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vaccines are critical for combating infectious diseases, saving millions of lives worldwide each year. Effective immunization requires precise vaccine delivery to ensure proper antigen transport and robust immune activation. Traditional vaccine delivery systems, however, face significant challenges, including low immunogenicity and undesirable inflammatory reactions, limiting their efficiency. Encapsulating or binding vaccines within biomaterials has emerged as a promising strategy to overcome these limitations. Among biomaterials, hydrogels have gained considerable attention for their biocompatibility, ability to interact with biological systems, and potential to modulate immune responses. Hydrogels offer a materials science-driven approach for targeted vaccine delivery, addressing the shortcomings of conventional methods while enhancing vaccine efficacy. This review examines the potential of hydrogel-based systems to improve immunogenicity and explores their dual role as immunomodulatory adjuvants. Innovative delivery methods, such as microneedles, patches, and inhalable systems, are discussed as minimally invasive alternatives to traditional administration routes. Additionally, this review addresses critical challenges, including safety, scalability, and regulatory considerations, offering insights into hydrogel-guided strategies for eliciting targeted immune responses and advancing global immunization efforts.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.