Multi-Condition Remaining Useful Life Prediction Based on Mixture of Encoders.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-01-17 DOI:10.3390/e27010079
Yang Liu, Bihe Xu, Yangli-Ao Geng
{"title":"Multi-Condition Remaining Useful Life Prediction Based on Mixture of Encoders.","authors":"Yang Liu, Bihe Xu, Yangli-Ao Geng","doi":"10.3390/e27010079","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate Remaining Useful Life (RUL) prediction is vital for effective prognostics in and the health management of industrial equipment, particularly under varying operational conditions. Existing approaches to multi-condition RUL prediction often treat each working condition independently, failing to effectively exploit cross-condition knowledge. To address this limitation, this paper introduces MoEFormer, a novel framework that combines a Mixture of Encoders (MoE) with a Transformer-based architecture to achieve precise multi-condition RUL prediction. The core innovation lies in the MoE architecture, where each encoder is designed to specialize in feature extraction for a specific operational condition. These features are then dynamically integrated through a gated mixture module, enabling the model to effectively leverage cross-condition knowledge. A Transformer layer is subsequently employed to capture temporal dependencies within the input sequence, followed by a fully connected layer to produce the final prediction. Additionally, we provide a theoretical performance guarantee for MoEFormer by deriving a lower bound for its error rate. Extensive experiments on the widely used C-MAPSS dataset demonstrate that MoEFormer outperforms several state-of-the-art methods for multi-condition RUL prediction.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010079","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate Remaining Useful Life (RUL) prediction is vital for effective prognostics in and the health management of industrial equipment, particularly under varying operational conditions. Existing approaches to multi-condition RUL prediction often treat each working condition independently, failing to effectively exploit cross-condition knowledge. To address this limitation, this paper introduces MoEFormer, a novel framework that combines a Mixture of Encoders (MoE) with a Transformer-based architecture to achieve precise multi-condition RUL prediction. The core innovation lies in the MoE architecture, where each encoder is designed to specialize in feature extraction for a specific operational condition. These features are then dynamically integrated through a gated mixture module, enabling the model to effectively leverage cross-condition knowledge. A Transformer layer is subsequently employed to capture temporal dependencies within the input sequence, followed by a fully connected layer to produce the final prediction. Additionally, we provide a theoretical performance guarantee for MoEFormer by deriving a lower bound for its error rate. Extensive experiments on the widely used C-MAPSS dataset demonstrate that MoEFormer outperforms several state-of-the-art methods for multi-condition RUL prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信