Measuring Complexity in Manufacturing: Integrating Entropic Methods, Programming and Simulation.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-01-09 DOI:10.3390/e27010050
Germán Herrera-Vidal, Jairo R Coronado-Hernández, Ivan Derpich-Contreras, Breezy P Martínez Paredes, Gustavo Gatica
{"title":"Measuring Complexity in Manufacturing: Integrating Entropic Methods, Programming and Simulation.","authors":"Germán Herrera-Vidal, Jairo R Coronado-Hernández, Ivan Derpich-Contreras, Breezy P Martínez Paredes, Gustavo Gatica","doi":"10.3390/e27010050","DOIUrl":null,"url":null,"abstract":"<p><p>This research addresses complexity in manufacturing systems from an entropic perspective for production improvement. The main objective is to develop and validate a methodology that develops an entropic metric of complexity in an integral way in production environments, through simulation and programming techniques. The methodological proposal is composed of six stages: (i) Case study, (ii) Hypothesis formulation, (iii) Discrete event simulation, (iv) Measurement of entropic complexity by applying Shannon's information theory, (v) Entropy analysis, and (vi) Statistical analysis by ANOVA. The results confirm that factors such as production sequence and product volume significantly influence the structural complexity of the workstations, with station A being less complex (0.4154 to 0.9913 bits) compared to stations B and C, which reached up to 2.2084 bits. This analysis has shown that optimizing production scheduling can reduce bottlenecks and improve system efficiency. Furthermore, the developed methodology, validated in a case study of the metalworking sector, provides a quantitative framework that combines discrete event simulation and robust statistical analysis, offering an effective tool to anticipate and manage complexity in production. In synthesis, this research presents an innovative methodology to measure static and dynamic complexity in manufacturing systems, with practical application to improve efficiency and competitiveness in the industrial sector.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010050","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research addresses complexity in manufacturing systems from an entropic perspective for production improvement. The main objective is to develop and validate a methodology that develops an entropic metric of complexity in an integral way in production environments, through simulation and programming techniques. The methodological proposal is composed of six stages: (i) Case study, (ii) Hypothesis formulation, (iii) Discrete event simulation, (iv) Measurement of entropic complexity by applying Shannon's information theory, (v) Entropy analysis, and (vi) Statistical analysis by ANOVA. The results confirm that factors such as production sequence and product volume significantly influence the structural complexity of the workstations, with station A being less complex (0.4154 to 0.9913 bits) compared to stations B and C, which reached up to 2.2084 bits. This analysis has shown that optimizing production scheduling can reduce bottlenecks and improve system efficiency. Furthermore, the developed methodology, validated in a case study of the metalworking sector, provides a quantitative framework that combines discrete event simulation and robust statistical analysis, offering an effective tool to anticipate and manage complexity in production. In synthesis, this research presents an innovative methodology to measure static and dynamic complexity in manufacturing systems, with practical application to improve efficiency and competitiveness in the industrial sector.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信