Employing Polymer and Gel to Fabricate Scaffold-like Cancellous Orthopedic Screw: Polycaprolactone/Chitosan/Hydroxyapatite.

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-01-02 DOI:10.3390/gels11010028
AmirHossein Badami, Javad Esmaeili, Hasan Mirtalaie
{"title":"Employing Polymer and Gel to Fabricate Scaffold-like Cancellous Orthopedic Screw: Polycaprolactone/Chitosan/Hydroxyapatite.","authors":"AmirHossein Badami, Javad Esmaeili, Hasan Mirtalaie","doi":"10.3390/gels11010028","DOIUrl":null,"url":null,"abstract":"<p><p>Using metallic/polymeric orthopedic screws causes cavities in bone trauma after the attachment of broken bones, which prolongs the healing. Yet, it remains unknown how to overcome such a challenge. The main aim of this research was to use both polymers and gels to fabricate and study a new PCL/chitosan/hydroxyapatite scaffold-like orthopedic screw for cancellous bone trauma. This screw, because of its low stiffness and its scaffold-based matrix (due to the gel part), can facilitate bone healing. Different concentrations of PCL (60-95% <i>w/v</i>) and chitosan (0-5% <i>w/v</i>) were blended according to the Response Surface Methodology using the Central Composite Design. The screws were fabricated using the freeze-drying technique. The screws were assessed mechanically, physically, and biologically (cell viability, cell attachment, DAPI, ALP staining, and Alizarin Red staining), and in vivo (a rat subcutaneous implantation model). Based on the results, screws depending on the PCL and gel content depicted different but notable mechanical behavior (10-60 MPa of compressive strength and 100-600 N force). The gel part could affect the physical properties of screws including water uptake (120%), degradation (18% after 21 days), porosities (23%), and mechanical strength (elastic modulus = 59.47 Mpa). The results also demonstrated no cytotoxicity towards MC3T3 cells (>80% cell viability) with good cell attachment, cell concentration, and mineralization (>90%) that was justified by the gel content. The results also showed good in vivo biocompatibility. To sum up, fabricated scaffold-like screws with gel content can be a good candidate for cancellous-bone-based orthopedic purposes. However, more in vitro and in vivo studies are required to optimize the PCL:gel ratio.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11010028","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Using metallic/polymeric orthopedic screws causes cavities in bone trauma after the attachment of broken bones, which prolongs the healing. Yet, it remains unknown how to overcome such a challenge. The main aim of this research was to use both polymers and gels to fabricate and study a new PCL/chitosan/hydroxyapatite scaffold-like orthopedic screw for cancellous bone trauma. This screw, because of its low stiffness and its scaffold-based matrix (due to the gel part), can facilitate bone healing. Different concentrations of PCL (60-95% w/v) and chitosan (0-5% w/v) were blended according to the Response Surface Methodology using the Central Composite Design. The screws were fabricated using the freeze-drying technique. The screws were assessed mechanically, physically, and biologically (cell viability, cell attachment, DAPI, ALP staining, and Alizarin Red staining), and in vivo (a rat subcutaneous implantation model). Based on the results, screws depending on the PCL and gel content depicted different but notable mechanical behavior (10-60 MPa of compressive strength and 100-600 N force). The gel part could affect the physical properties of screws including water uptake (120%), degradation (18% after 21 days), porosities (23%), and mechanical strength (elastic modulus = 59.47 Mpa). The results also demonstrated no cytotoxicity towards MC3T3 cells (>80% cell viability) with good cell attachment, cell concentration, and mineralization (>90%) that was justified by the gel content. The results also showed good in vivo biocompatibility. To sum up, fabricated scaffold-like screws with gel content can be a good candidate for cancellous-bone-based orthopedic purposes. However, more in vitro and in vivo studies are required to optimize the PCL:gel ratio.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信