Wafa Labidi, Yaning Zhao, Christian Deppe, Holger Boche
{"title":"Joint Identification and Sensing for Discrete Memoryless Channels.","authors":"Wafa Labidi, Yaning Zhao, Christian Deppe, Holger Boche","doi":"10.3390/e27010012","DOIUrl":null,"url":null,"abstract":"<p><p>In the identification (ID) scheme proposed by Ahlswede and Dueck, the receiver's goal is simply to verify whether a specific message of interest was sent. Unlike Shannon's transmission codes, which aim for message decoding, ID codes for a discrete memoryless channel (DMC) are far more efficient; their size grows doubly exponentially with the blocklength when randomized encoding is used. This indicates that when the receiver's objective does not require decoding, the ID paradigm is significantly more efficient than traditional Shannon transmission in terms of both energy consumption and hardware complexity. Further benefits of ID schemes can be realized by leveraging additional resources such as feedback. In this work, we address the problem of joint ID and channel state estimation over a DMC with independent and identically distributed (i.i.d.) state sequences. State estimation functions as the sensing mechanism of the model. Specifically, the sender transmits an ID message over the DMC while simultaneously estimating the channel state through strictly causal observations of the channel output. Importantly, the random channel state is unknown to both the sender and the receiver. For this system model, we present a complete characterization of the ID capacity-distortion function.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010012","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the identification (ID) scheme proposed by Ahlswede and Dueck, the receiver's goal is simply to verify whether a specific message of interest was sent. Unlike Shannon's transmission codes, which aim for message decoding, ID codes for a discrete memoryless channel (DMC) are far more efficient; their size grows doubly exponentially with the blocklength when randomized encoding is used. This indicates that when the receiver's objective does not require decoding, the ID paradigm is significantly more efficient than traditional Shannon transmission in terms of both energy consumption and hardware complexity. Further benefits of ID schemes can be realized by leveraging additional resources such as feedback. In this work, we address the problem of joint ID and channel state estimation over a DMC with independent and identically distributed (i.i.d.) state sequences. State estimation functions as the sensing mechanism of the model. Specifically, the sender transmits an ID message over the DMC while simultaneously estimating the channel state through strictly causal observations of the channel output. Importantly, the random channel state is unknown to both the sender and the receiver. For this system model, we present a complete characterization of the ID capacity-distortion function.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.