{"title":"Heat Transport Hysteresis Generated Through Frequency Switching of a Time-Dependent Temperature Gradient.","authors":"Renai Chen, Galen T Craven","doi":"10.3390/e27010018","DOIUrl":null,"url":null,"abstract":"<p><p>A stochastic energetics framework is applied to examine how periodically shifting the frequency of a time-dependent oscillating temperature gradient affects heat transport in a nanoscale molecular model. We specifically examine the effects that frequency switching, i.e., instantaneously changing the oscillation frequency of the temperature gradient, has on the shape of the heat transport hysteresis curves generated by a particle connected to two thermal baths, each with a temperature that is oscillating in time. Analytical expressions are derived for the energy fluxes in/out of the system and the baths, with excellent agreement observed between the analytical expressions and the results from nonequilibrium molecular dynamics simulations. We find that the shape of the heat transport hysteresis curves can be significantly altered by shifting the frequency between fast and slow oscillation regimes. We also observe the emergence of features in the hysteresis curves such as pinched loops and complex multi-loop patterns due to the frequency shifting. The presented results have implications in the design of thermal neuromorphic devices such as thermal memristors and thermal memcapacitors.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765464/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010018","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A stochastic energetics framework is applied to examine how periodically shifting the frequency of a time-dependent oscillating temperature gradient affects heat transport in a nanoscale molecular model. We specifically examine the effects that frequency switching, i.e., instantaneously changing the oscillation frequency of the temperature gradient, has on the shape of the heat transport hysteresis curves generated by a particle connected to two thermal baths, each with a temperature that is oscillating in time. Analytical expressions are derived for the energy fluxes in/out of the system and the baths, with excellent agreement observed between the analytical expressions and the results from nonequilibrium molecular dynamics simulations. We find that the shape of the heat transport hysteresis curves can be significantly altered by shifting the frequency between fast and slow oscillation regimes. We also observe the emergence of features in the hysteresis curves such as pinched loops and complex multi-loop patterns due to the frequency shifting. The presented results have implications in the design of thermal neuromorphic devices such as thermal memristors and thermal memcapacitors.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.