The Clinical Application of Gel-Based Composite Scaffolds in Rotator Cuff Repair.

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2024-12-24 DOI:10.3390/gels11010002
Shebin Tharakan, Michael Hadjiargyrou, Azhar Ilyas
{"title":"The Clinical Application of Gel-Based Composite Scaffolds in Rotator Cuff Repair.","authors":"Shebin Tharakan, Michael Hadjiargyrou, Azhar Ilyas","doi":"10.3390/gels11010002","DOIUrl":null,"url":null,"abstract":"<p><p>Rotator cuff tears are a common injury that can be treated with or without surgical intervention. Gel-based scaffolds have gained significant attention in the field of tissue engineering, particularly for applications like rotator cuff repair. Scaffolds can be biological, synthetic, or a mixture of both materials. Collagen, a primary constituent of the extracellular matrix (ECM) in musculoskeletal tissues, is one of the most widely used materials for gel-based scaffolds in rotator cuff repair, but other ECM-based and synthetic-based composite scaffolds have also been utilized. These composite scaffolds can be engineered to mimic the biomechanical and biological properties of natural tissues, supporting the healing process and promoting regeneration. Various clinical studies examined the effectiveness of these composite scaffolds with collagen, ECM and synthetic polymers and provided outstanding results with remarkable improvements in range of motion (ROM), strength, and pain. This review explores the material composition, manufacturing process and material properties of gel-based composite scaffolds as well as their clinical outcomes for the treatment of rotator cuff injuries.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11010002","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Rotator cuff tears are a common injury that can be treated with or without surgical intervention. Gel-based scaffolds have gained significant attention in the field of tissue engineering, particularly for applications like rotator cuff repair. Scaffolds can be biological, synthetic, or a mixture of both materials. Collagen, a primary constituent of the extracellular matrix (ECM) in musculoskeletal tissues, is one of the most widely used materials for gel-based scaffolds in rotator cuff repair, but other ECM-based and synthetic-based composite scaffolds have also been utilized. These composite scaffolds can be engineered to mimic the biomechanical and biological properties of natural tissues, supporting the healing process and promoting regeneration. Various clinical studies examined the effectiveness of these composite scaffolds with collagen, ECM and synthetic polymers and provided outstanding results with remarkable improvements in range of motion (ROM), strength, and pain. This review explores the material composition, manufacturing process and material properties of gel-based composite scaffolds as well as their clinical outcomes for the treatment of rotator cuff injuries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信