Polydeoxynucleotide-Loaded Visible Light Photo-Crosslinked Gelatin Methacrylate Hydrogel: Approach to Accelerating Cartilage Regeneration.

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-01-07 DOI:10.3390/gels11010042
Sunjae Park, Youngjun Son, Jonggyu Park, Soyoon Lee, Na-Hyeon Kim, Se-Na Jang, Tae-Woong Kang, Jeong-Eun Song, Gilson Khang
{"title":"Polydeoxynucleotide-Loaded Visible Light Photo-Crosslinked Gelatin Methacrylate Hydrogel: Approach to Accelerating Cartilage Regeneration.","authors":"Sunjae Park, Youngjun Son, Jonggyu Park, Soyoon Lee, Na-Hyeon Kim, Se-Na Jang, Tae-Woong Kang, Jeong-Eun Song, Gilson Khang","doi":"10.3390/gels11010042","DOIUrl":null,"url":null,"abstract":"<p><p>Articular cartilage faces challenges in self-repair due to the lack of blood vessels and limited chondrocyte concentration. Polydeoxyribonucleotide (PDRN) shows promise for promoting chondrocyte growth and cartilage regeneration, but its delivery has been limited to injections. Continuous PDRN delivery is crucial for effective cartilage regeneration. This study explores using gelatin methacrylate (gelMA) hydrogel, crosslinked with visible light and riboflavin 5'-phosphate sodium (RF) as a photoinitiator, for sustained PDRN release. GelMA hydrogel's synthesis was confirmed through spectrophotometric techniques, demonstrating successful methacrylate group incorporation. PDRN-loaded gelMA hydrogels displayed varying pore sizes, swelling ratios, degradation rates, and mechanical properties based on gelMA concentration. They showed sustained PDRN release and biocompatibility, with the 14% gelMA-PDRN composition performing best. Glycosaminoglycan (GAG) activity was higher in PDRN-loaded hydrogels, indicating a positive effect on cartilage formation. RT-PCR analysis revealed increased expression of cartilage-specific genes (COL2, SOX9, AGG) in gelMA-PDRN. Histological assessments in a rabbit cartilage defect model demonstrated superior regenerative effects of gelMA-PDRN hydrogels. This study highlights the potential of gelMA-PDRN hydrogels in cartilage tissue engineering, providing a promising approach for effective cartilage regeneration.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765300/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11010042","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Articular cartilage faces challenges in self-repair due to the lack of blood vessels and limited chondrocyte concentration. Polydeoxyribonucleotide (PDRN) shows promise for promoting chondrocyte growth and cartilage regeneration, but its delivery has been limited to injections. Continuous PDRN delivery is crucial for effective cartilage regeneration. This study explores using gelatin methacrylate (gelMA) hydrogel, crosslinked with visible light and riboflavin 5'-phosphate sodium (RF) as a photoinitiator, for sustained PDRN release. GelMA hydrogel's synthesis was confirmed through spectrophotometric techniques, demonstrating successful methacrylate group incorporation. PDRN-loaded gelMA hydrogels displayed varying pore sizes, swelling ratios, degradation rates, and mechanical properties based on gelMA concentration. They showed sustained PDRN release and biocompatibility, with the 14% gelMA-PDRN composition performing best. Glycosaminoglycan (GAG) activity was higher in PDRN-loaded hydrogels, indicating a positive effect on cartilage formation. RT-PCR analysis revealed increased expression of cartilage-specific genes (COL2, SOX9, AGG) in gelMA-PDRN. Histological assessments in a rabbit cartilage defect model demonstrated superior regenerative effects of gelMA-PDRN hydrogels. This study highlights the potential of gelMA-PDRN hydrogels in cartilage tissue engineering, providing a promising approach for effective cartilage regeneration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信