{"title":"Distinguishing Ideal and Non-Ideal Chemical Systems Based on Kinetic Behavior.","authors":"Gregory Yablonsky, Vladislav Fedotov","doi":"10.3390/e27010077","DOIUrl":null,"url":null,"abstract":"<p><p>This paper focuses on differentiating between ideal and non-ideal chemical systems based on their kinetic behavior within a closed isothermal chemical environment. Non-ideality is examined using the non-ideal Marcelin-de Donde model. The analysis primarily addresses 'soft' non-ideality, where the equilibrium composition for a reversible non-ideal chemical system is identical to the corresponding composition for the ideal chemical system. Our approach in distinguishing the ideal and non-ideal systems is based on the properties of the special event, i.e., event, the time of which is well-defined. For the single-step first-order reaction in the ideal system, this event is the half-time-decay point, or the intersection point. For the two consecutive reversible reactions in the ideal system, A ↔ B ↔ C, this event is the extremum obtained within the conservatively perturbed equilibrium (CPE) procedure. For the non-ideal correspondent models, the times of chosen events significantly depend on the initial concentrations. The obtained difference in the behavior of the times of these events (intersection point and CPE-extremum point) between the ideal and non-ideal systems is proposed as the kinetic fingerprint for distinguishing these systems.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010077","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on differentiating between ideal and non-ideal chemical systems based on their kinetic behavior within a closed isothermal chemical environment. Non-ideality is examined using the non-ideal Marcelin-de Donde model. The analysis primarily addresses 'soft' non-ideality, where the equilibrium composition for a reversible non-ideal chemical system is identical to the corresponding composition for the ideal chemical system. Our approach in distinguishing the ideal and non-ideal systems is based on the properties of the special event, i.e., event, the time of which is well-defined. For the single-step first-order reaction in the ideal system, this event is the half-time-decay point, or the intersection point. For the two consecutive reversible reactions in the ideal system, A ↔ B ↔ C, this event is the extremum obtained within the conservatively perturbed equilibrium (CPE) procedure. For the non-ideal correspondent models, the times of chosen events significantly depend on the initial concentrations. The obtained difference in the behavior of the times of these events (intersection point and CPE-extremum point) between the ideal and non-ideal systems is proposed as the kinetic fingerprint for distinguishing these systems.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.