Lena Schmid, Moritz Roidl, Alice Kirchheim, Markus Pauly
{"title":"Comparing Statistical and Machine Learning Methods for Time Series Forecasting in Data-Driven Logistics-A Simulation Study.","authors":"Lena Schmid, Moritz Roidl, Alice Kirchheim, Markus Pauly","doi":"10.3390/e27010025","DOIUrl":null,"url":null,"abstract":"<p><p>Many planning and decision activities in logistics and supply chain management are based on forecasts of multiple time dependent factors. Therefore, the quality of planning depends on the quality of the forecasts. We compare different state-of-the-art forecasting methods in terms of forecasting performance. Differently from most existing research in logistics, we do not perform this in a case-dependent way but consider a broad set of simulated time series to give more general recommendations. We therefore simulate various linear and nonlinear time series that reflect different situations. Our simulation results showed that the machine learning methods, especially Random Forests, performed particularly well in complex scenarios, with the differentiated time series training significantly improving the robustness of the model. In addition, the time series approaches proved to be competitive in low noise scenarios.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010025","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many planning and decision activities in logistics and supply chain management are based on forecasts of multiple time dependent factors. Therefore, the quality of planning depends on the quality of the forecasts. We compare different state-of-the-art forecasting methods in terms of forecasting performance. Differently from most existing research in logistics, we do not perform this in a case-dependent way but consider a broad set of simulated time series to give more general recommendations. We therefore simulate various linear and nonlinear time series that reflect different situations. Our simulation results showed that the machine learning methods, especially Random Forests, performed particularly well in complex scenarios, with the differentiated time series training significantly improving the robustness of the model. In addition, the time series approaches proved to be competitive in low noise scenarios.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.