Comparing Statistical and Machine Learning Methods for Time Series Forecasting in Data-Driven Logistics-A Simulation Study.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-12-31 DOI:10.3390/e27010025
Lena Schmid, Moritz Roidl, Alice Kirchheim, Markus Pauly
{"title":"Comparing Statistical and Machine Learning Methods for Time Series Forecasting in Data-Driven Logistics-A Simulation Study.","authors":"Lena Schmid, Moritz Roidl, Alice Kirchheim, Markus Pauly","doi":"10.3390/e27010025","DOIUrl":null,"url":null,"abstract":"<p><p>Many planning and decision activities in logistics and supply chain management are based on forecasts of multiple time dependent factors. Therefore, the quality of planning depends on the quality of the forecasts. We compare different state-of-the-art forecasting methods in terms of forecasting performance. Differently from most existing research in logistics, we do not perform this in a case-dependent way but consider a broad set of simulated time series to give more general recommendations. We therefore simulate various linear and nonlinear time series that reflect different situations. Our simulation results showed that the machine learning methods, especially Random Forests, performed particularly well in complex scenarios, with the differentiated time series training significantly improving the robustness of the model. In addition, the time series approaches proved to be competitive in low noise scenarios.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010025","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many planning and decision activities in logistics and supply chain management are based on forecasts of multiple time dependent factors. Therefore, the quality of planning depends on the quality of the forecasts. We compare different state-of-the-art forecasting methods in terms of forecasting performance. Differently from most existing research in logistics, we do not perform this in a case-dependent way but consider a broad set of simulated time series to give more general recommendations. We therefore simulate various linear and nonlinear time series that reflect different situations. Our simulation results showed that the machine learning methods, especially Random Forests, performed particularly well in complex scenarios, with the differentiated time series training significantly improving the robustness of the model. In addition, the time series approaches proved to be competitive in low noise scenarios.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信