An Efficient Retinal Fluid Segmentation Network Based on Large Receptive Field Context Capture for Optical Coherence Tomography Images.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-01-11 DOI:10.3390/e27010060
Hang Qi, Weijiang Wang, Hua Dang, Yueyang Chen, Minli Jia, Xiaohua Wang
{"title":"An Efficient Retinal Fluid Segmentation Network Based on Large Receptive Field Context Capture for Optical Coherence Tomography Images.","authors":"Hang Qi, Weijiang Wang, Hua Dang, Yueyang Chen, Minli Jia, Xiaohua Wang","doi":"10.3390/e27010060","DOIUrl":null,"url":null,"abstract":"<p><p>Optical Coherence Tomography (OCT) is a crucial imaging modality for diagnosing and monitoring retinal diseases. However, the accurate segmentation of fluid regions and lesions remains challenging due to noise, low contrast, and blurred edges in OCT images. Although feature modeling with wide or global receptive fields offers a feasible solution, it typically leads to significant computational overhead. To address these challenges, we propose LKMU-Lite, a lightweight U-shaped segmentation method tailored for retinal fluid segmentation. LKMU-Lite integrates a Decoupled Large Kernel Attention (DLKA) module that captures both local patterns and long-range dependencies, thereby enhancing feature representation. Additionally, it incorporates a Multi-scale Group Perception (MSGP) module that employs Dilated Convolutions with varying receptive field scales to effectively predict lesions of different shapes and sizes. Furthermore, a novel Aggregating-Shift decoder is proposed, reducing model complexity while preserving feature integrity. With only 1.02 million parameters and a computational complexity of 3.82 G FLOPs, LKMU-Lite achieves state-of-the-art performance across multiple metrics on the ICF and RETOUCH datasets, demonstrating both its efficiency and generalizability compared to existing methods.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010060","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical Coherence Tomography (OCT) is a crucial imaging modality for diagnosing and monitoring retinal diseases. However, the accurate segmentation of fluid regions and lesions remains challenging due to noise, low contrast, and blurred edges in OCT images. Although feature modeling with wide or global receptive fields offers a feasible solution, it typically leads to significant computational overhead. To address these challenges, we propose LKMU-Lite, a lightweight U-shaped segmentation method tailored for retinal fluid segmentation. LKMU-Lite integrates a Decoupled Large Kernel Attention (DLKA) module that captures both local patterns and long-range dependencies, thereby enhancing feature representation. Additionally, it incorporates a Multi-scale Group Perception (MSGP) module that employs Dilated Convolutions with varying receptive field scales to effectively predict lesions of different shapes and sizes. Furthermore, a novel Aggregating-Shift decoder is proposed, reducing model complexity while preserving feature integrity. With only 1.02 million parameters and a computational complexity of 3.82 G FLOPs, LKMU-Lite achieves state-of-the-art performance across multiple metrics on the ICF and RETOUCH datasets, demonstrating both its efficiency and generalizability compared to existing methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信