Hang Qi, Weijiang Wang, Hua Dang, Yueyang Chen, Minli Jia, Xiaohua Wang
{"title":"An Efficient Retinal Fluid Segmentation Network Based on Large Receptive Field Context Capture for Optical Coherence Tomography Images.","authors":"Hang Qi, Weijiang Wang, Hua Dang, Yueyang Chen, Minli Jia, Xiaohua Wang","doi":"10.3390/e27010060","DOIUrl":null,"url":null,"abstract":"<p><p>Optical Coherence Tomography (OCT) is a crucial imaging modality for diagnosing and monitoring retinal diseases. However, the accurate segmentation of fluid regions and lesions remains challenging due to noise, low contrast, and blurred edges in OCT images. Although feature modeling with wide or global receptive fields offers a feasible solution, it typically leads to significant computational overhead. To address these challenges, we propose LKMU-Lite, a lightweight U-shaped segmentation method tailored for retinal fluid segmentation. LKMU-Lite integrates a Decoupled Large Kernel Attention (DLKA) module that captures both local patterns and long-range dependencies, thereby enhancing feature representation. Additionally, it incorporates a Multi-scale Group Perception (MSGP) module that employs Dilated Convolutions with varying receptive field scales to effectively predict lesions of different shapes and sizes. Furthermore, a novel Aggregating-Shift decoder is proposed, reducing model complexity while preserving feature integrity. With only 1.02 million parameters and a computational complexity of 3.82 G FLOPs, LKMU-Lite achieves state-of-the-art performance across multiple metrics on the ICF and RETOUCH datasets, demonstrating both its efficiency and generalizability compared to existing methods.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010060","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical Coherence Tomography (OCT) is a crucial imaging modality for diagnosing and monitoring retinal diseases. However, the accurate segmentation of fluid regions and lesions remains challenging due to noise, low contrast, and blurred edges in OCT images. Although feature modeling with wide or global receptive fields offers a feasible solution, it typically leads to significant computational overhead. To address these challenges, we propose LKMU-Lite, a lightweight U-shaped segmentation method tailored for retinal fluid segmentation. LKMU-Lite integrates a Decoupled Large Kernel Attention (DLKA) module that captures both local patterns and long-range dependencies, thereby enhancing feature representation. Additionally, it incorporates a Multi-scale Group Perception (MSGP) module that employs Dilated Convolutions with varying receptive field scales to effectively predict lesions of different shapes and sizes. Furthermore, a novel Aggregating-Shift decoder is proposed, reducing model complexity while preserving feature integrity. With only 1.02 million parameters and a computational complexity of 3.82 G FLOPs, LKMU-Lite achieves state-of-the-art performance across multiple metrics on the ICF and RETOUCH datasets, demonstrating both its efficiency and generalizability compared to existing methods.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.