{"title":"Advanced Monte Carlo for Acquisition Sampling in Bayesian Optimization.","authors":"Javier Garcia-Barcos, Ruben Martinez-Cantin","doi":"10.3390/e27010058","DOIUrl":null,"url":null,"abstract":"<p><p>Optimizing complex systems usually involves costly and time-consuming experiments, where selecting the experiments to perform is fundamental. Bayesian optimization (BO) has proved to be a suitable optimization method in these situations thanks to its sample efficiency and principled way of learning from previous data, but it typically requires that experiments are sequentially performed. Fully distributed BO addresses the need for efficient parallel and asynchronous active search, especially where traditional centralized BO faces limitations concerning privacy in federated learning and resource utilization in high-performance computing settings. Boltzmann sampling is an embarrassingly parallel method that enables fully distributed BO using Monte Carlo sampling. However, it also requires sampling from a continuous acquisition function, which can be challenging even for advanced Monte Carlo methods due to its highly multimodal nature, constrained search space, and possibly numerically unstable values. We introduce a simplified version of Boltzmann sampling, and we analyze multiple Markov chain Monte Carlo (MCMC) methods with a numerically improved log EI implementation for acquisition sampling. Our experiments suggest that by introducing gradient information during MCMC sampling, methods such as the MALA or CyclicalSGLD improve acquisition sampling efficiency. Interestingly, a mixture of proposals for the Metropolis-Hastings approach proves to be effective despite its simplicity.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010058","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing complex systems usually involves costly and time-consuming experiments, where selecting the experiments to perform is fundamental. Bayesian optimization (BO) has proved to be a suitable optimization method in these situations thanks to its sample efficiency and principled way of learning from previous data, but it typically requires that experiments are sequentially performed. Fully distributed BO addresses the need for efficient parallel and asynchronous active search, especially where traditional centralized BO faces limitations concerning privacy in federated learning and resource utilization in high-performance computing settings. Boltzmann sampling is an embarrassingly parallel method that enables fully distributed BO using Monte Carlo sampling. However, it also requires sampling from a continuous acquisition function, which can be challenging even for advanced Monte Carlo methods due to its highly multimodal nature, constrained search space, and possibly numerically unstable values. We introduce a simplified version of Boltzmann sampling, and we analyze multiple Markov chain Monte Carlo (MCMC) methods with a numerically improved log EI implementation for acquisition sampling. Our experiments suggest that by introducing gradient information during MCMC sampling, methods such as the MALA or CyclicalSGLD improve acquisition sampling efficiency. Interestingly, a mixture of proposals for the Metropolis-Hastings approach proves to be effective despite its simplicity.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.