{"title":"A Novel Hyper-Heuristic Algorithm with Soft and Hard Constraints for Causal Discovery Using a Linear Structural Equation Model.","authors":"Yinglong Dang, Xiaoguang Gao, Zidong Wang","doi":"10.3390/e27010038","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence plays an indispensable role in improving productivity and promoting social development, and causal discovery is one of the extremely important research directions in this field. Acyclic directed graphs (DAGs) are the most commonly used tool in causal modeling because of their excellent interpretability and structural properties. However, in the face of insufficient data, the accuracy and efficiency of DAGs learning are greatly reduced, resulting in a false perception of causality. As intuitive expert knowledge, structural constraints control DAG learning by limiting the causal relationship between variables, which is expected to solve the above-mentioned problem. However, it is often impossible to build a DAG by relying on expert knowledge alone. To solve this problem, we propose the use of expert knowledge as a hard constraint and the structural prior gained via data learning as a soft constraint. In this paper, we propose a fitness-rate-rank-based multiarmed bandit (FRRMAB) hyper-heuristic that integrates soft and hard constraints into the DAG learning process. For a linear structural equation model (SEM), soft constraints are obtained via partial correlation analysis. The experimental results on different networks show that the proposed method has higher scalability and accuracy.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010038","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence plays an indispensable role in improving productivity and promoting social development, and causal discovery is one of the extremely important research directions in this field. Acyclic directed graphs (DAGs) are the most commonly used tool in causal modeling because of their excellent interpretability and structural properties. However, in the face of insufficient data, the accuracy and efficiency of DAGs learning are greatly reduced, resulting in a false perception of causality. As intuitive expert knowledge, structural constraints control DAG learning by limiting the causal relationship between variables, which is expected to solve the above-mentioned problem. However, it is often impossible to build a DAG by relying on expert knowledge alone. To solve this problem, we propose the use of expert knowledge as a hard constraint and the structural prior gained via data learning as a soft constraint. In this paper, we propose a fitness-rate-rank-based multiarmed bandit (FRRMAB) hyper-heuristic that integrates soft and hard constraints into the DAG learning process. For a linear structural equation model (SEM), soft constraints are obtained via partial correlation analysis. The experimental results on different networks show that the proposed method has higher scalability and accuracy.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.