Cyanamide-Based Cyclization Reactions for Nitrogen-Containing Heterocycles Synthesis.

IF 2.5 4区 化学 Q3 CHEMISTRY, ORGANIC
Yu-Xin Wu, Cheng-Liang Liu, Qian Yan, Si-Han Chen, Zi-Rui Kuang, Han-Wen Liu, Jiang-Sheng Li, Zhi-Wei Li
{"title":"Cyanamide-Based Cyclization Reactions for Nitrogen-Containing Heterocycles Synthesis.","authors":"Yu-Xin Wu, Cheng-Liang Liu, Qian Yan, Si-Han Chen, Zi-Rui Kuang, Han-Wen Liu, Jiang-Sheng Li, Zhi-Wei Li","doi":"10.2174/0115701794345484241217075932","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen-containing heterocycles, such as indoles and quinolines, serve as the key scaffolds in numerous pharmaceuticals, pesticides, and natural products. The synthesis methods of nitrogen-containing heterocycles show significant scientific and industrial value. As a chemical intermediate featuring dual functional groups, cyanamide plays a crucial role in organic synthesis, directly affecting the development of new drugs and the design of new materials. Particularly in the synthesis of nitrogen-containing heterocyclic compounds, the cyano group can introduce vari-ous groups through radical pathways to synthesize polycyclic N-heterocyclic frameworks, as well as yielding a variety of nitrogen-containing heterocycles through non-radical pathways. This di-verse reaction pathway makes the application of cyanamide in chemical synthesis more extensive and flexible. The progress involving cyanamide in the synthesis of quinazoline and quinazoli-none, γ-lactams, and other nitrogen-containing heterocyclic frameworks is summarized. The main mechanisms and reaction strategies are emphasized and explicated from the perspective of radical and non-radical synthetic pathways, revealing the potential application value of these compounds in different fields. This review paves the way for the synthesis of various nitrogen-containing het-erocyclic compounds, particularly in achieving green chemistry and sustainable development goals. These new methods and ideas are expected to promote the development of more efficient and economical synthesis strategies in the future, thereby advancing the widespread application of nitrogen-containing heterocyclic compounds in pharmaceuticals, agricultural chemicals, and new materials.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794345484241217075932","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen-containing heterocycles, such as indoles and quinolines, serve as the key scaffolds in numerous pharmaceuticals, pesticides, and natural products. The synthesis methods of nitrogen-containing heterocycles show significant scientific and industrial value. As a chemical intermediate featuring dual functional groups, cyanamide plays a crucial role in organic synthesis, directly affecting the development of new drugs and the design of new materials. Particularly in the synthesis of nitrogen-containing heterocyclic compounds, the cyano group can introduce vari-ous groups through radical pathways to synthesize polycyclic N-heterocyclic frameworks, as well as yielding a variety of nitrogen-containing heterocycles through non-radical pathways. This di-verse reaction pathway makes the application of cyanamide in chemical synthesis more extensive and flexible. The progress involving cyanamide in the synthesis of quinazoline and quinazoli-none, γ-lactams, and other nitrogen-containing heterocyclic frameworks is summarized. The main mechanisms and reaction strategies are emphasized and explicated from the perspective of radical and non-radical synthetic pathways, revealing the potential application value of these compounds in different fields. This review paves the way for the synthesis of various nitrogen-containing het-erocyclic compounds, particularly in achieving green chemistry and sustainable development goals. These new methods and ideas are expected to promote the development of more efficient and economical synthesis strategies in the future, thereby advancing the widespread application of nitrogen-containing heterocyclic compounds in pharmaceuticals, agricultural chemicals, and new materials.

基于氰胺的含氮杂环合成环化反应。
含氮杂环化合物,如吲哚和喹啉,是许多药物、农药和天然产物的关键支架。含氮杂环化合物的合成方法具有重要的科学和工业价值。氰酰胺作为一种具有双官能团的化学中间体,在有机合成中起着至关重要的作用,直接影响到新药的开发和新材料的设计。特别是在含氮杂环化合物的合成中,氰基可以通过自由基途径引入各种基团合成多环n-杂环框架,也可以通过非自由基途径生成多种含氮杂环。这种多样化的反应途径使得氰胺在化学合成中的应用更加广泛和灵活。综述了氰酰胺在合成喹唑啉、喹唑啉-无、γ-内酰胺等含氮杂环骨架中的研究进展。从自由基和非自由基合成途径的角度对其主要机理和反应策略进行了重点阐述,揭示了这些化合物在不同领域的潜在应用价值。该综述为各种含氮杂环化合物的合成,特别是实现绿色化学和可持续发展目标奠定了基础。这些新方法和新思路有望在未来促进更高效、更经济的合成策略的发展,从而推动含氮杂环化合物在药物、农药和新材料等领域的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current organic synthesis
Current organic synthesis 化学-有机化学
CiteScore
3.40
自引率
5.60%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信