Exploring the Mechanism of Shi-San-Wei-He-Zhong-Wan in the Treatment of Functional Dyspepsia Based on Network Pharmacology and Experimental Validation.
Xiao Min Li, Jing Wei Zhu, Kui Wu Li, Xiao Yu Han, Jing Ru Ruan, Hao Ran Chu
{"title":"Exploring the Mechanism of Shi-San-Wei-He-Zhong-Wan in the Treatment of Functional Dyspepsia Based on Network Pharmacology and Experimental Validation.","authors":"Xiao Min Li, Jing Wei Zhu, Kui Wu Li, Xiao Yu Han, Jing Ru Ruan, Hao Ran Chu","doi":"10.2174/0113862073358956241203101815","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The incidence of Functional Dyspepsia (FD) is gradually increasing, yet there are currently no effective treatment methods available. This study explored the effective components, potential targets, and pathways of Shi-San-Wei-He-Zhong-Wan (SSWHZW) in the treatment of FD, aiming to provide new insights into its treatment.</p><p><strong>Methods: </strong>First, the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and GeneCards databases were utilized to identify the major active components of SSWHZW and potential therapeutic targets of FD. Subsequently, functional enrichment analyses were performed to elucidate the mechanisms of SSWHZW on FD. Molecular docking simulations were then conducted to assess the binding affinity of key targets and major active components. Next, an FD animal model was established, and the therapeutic effects of SSWHZW were validated using Hematoxylin and Eosin (HE) staining and Enzyme-linked Immunosorbent Assay (ELISA). Finally, Western blot analysis was performed to validate the involvement of key signaling pathways.</p><p><strong>Results: </strong>A total of 229 active ingredients and 283 putative targets were identified from SSWHZW, of which 173 overlapped with the targets of FD and were considered potential therapeutic targets. Key ingredients, such as quercetin, kaempferol, wogonin, and baicalein, were identified as pivotal components of SSWHZW, potentially acting on the 173 overlapping targets and influencing FD through related signaling pathways. Functional enrichment analysis revealed that the PI3K-Akt signaling pathway, VEGF signaling pathway, and NF-kappa B signaling pathway may be involved in the mechanism of SSWHZW in treating FD. Molecular docking predicted that all five ingredients could firmly bind with the top-ranked target TP53 in the Protein- protein Interaction (PPI) network. Further experiments demonstrated that SSWHZW protected the intestinal tissues of FD rats from inflammatory damage by inhibiting the PI3K/AKT signaling pathway.</p><p><strong>Conclusion: </strong>Based on network pharmacology, this study explored the multi-component, multitarget, and multi-pathway characteristics of SSWHZW in treating FD. The findings suggest that SSWHZW exerts its anti-FD effects by inhibiting the expression of the PI3K/AKT signaling pathway, providing new insights and methods for further research on the mechanism of SSWHZW in treating FD.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073358956241203101815","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The incidence of Functional Dyspepsia (FD) is gradually increasing, yet there are currently no effective treatment methods available. This study explored the effective components, potential targets, and pathways of Shi-San-Wei-He-Zhong-Wan (SSWHZW) in the treatment of FD, aiming to provide new insights into its treatment.
Methods: First, the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and GeneCards databases were utilized to identify the major active components of SSWHZW and potential therapeutic targets of FD. Subsequently, functional enrichment analyses were performed to elucidate the mechanisms of SSWHZW on FD. Molecular docking simulations were then conducted to assess the binding affinity of key targets and major active components. Next, an FD animal model was established, and the therapeutic effects of SSWHZW were validated using Hematoxylin and Eosin (HE) staining and Enzyme-linked Immunosorbent Assay (ELISA). Finally, Western blot analysis was performed to validate the involvement of key signaling pathways.
Results: A total of 229 active ingredients and 283 putative targets were identified from SSWHZW, of which 173 overlapped with the targets of FD and were considered potential therapeutic targets. Key ingredients, such as quercetin, kaempferol, wogonin, and baicalein, were identified as pivotal components of SSWHZW, potentially acting on the 173 overlapping targets and influencing FD through related signaling pathways. Functional enrichment analysis revealed that the PI3K-Akt signaling pathway, VEGF signaling pathway, and NF-kappa B signaling pathway may be involved in the mechanism of SSWHZW in treating FD. Molecular docking predicted that all five ingredients could firmly bind with the top-ranked target TP53 in the Protein- protein Interaction (PPI) network. Further experiments demonstrated that SSWHZW protected the intestinal tissues of FD rats from inflammatory damage by inhibiting the PI3K/AKT signaling pathway.
Conclusion: Based on network pharmacology, this study explored the multi-component, multitarget, and multi-pathway characteristics of SSWHZW in treating FD. The findings suggest that SSWHZW exerts its anti-FD effects by inhibiting the expression of the PI3K/AKT signaling pathway, providing new insights and methods for further research on the mechanism of SSWHZW in treating FD.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.