Air Particle Abrasion in Dentistry: An Overview of Effects on Dentin Adhesion and Bond Strength.

IF 2.5 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Andreea Kui, Smaranda Buduru, Anca Labuneț, Sorina Sava, Dalia Pop, Iris Bara, Marius Negucioiu
{"title":"Air Particle Abrasion in Dentistry: An Overview of Effects on Dentin Adhesion and Bond Strength.","authors":"Andreea Kui, Smaranda Buduru, Anca Labuneț, Sorina Sava, Dalia Pop, Iris Bara, Marius Negucioiu","doi":"10.3390/dj13010016","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Air particle abrasion (APA) is a common surface preparation method in dentistry, particularly for improving bond strength to dentin. This review evaluates the influence of APA on dentin adhesion. <b>Methods</b>: A systematic literature search from 2018 to 2023 was conducted according to PRISMA-ScR guidelines. Articles investigating the effects of APA on dentin adhesion using different particle types, sizes and adhesive systems were included. Data extraction included particle size, air pressure, outcomes tested and failure modes. <b>Results</b>: Fourteen primary studies met the criteria. Bioactive glass showed higher bond strength and more cohesive failures than alumina. Alumina particles (50 μm) bonded effectively in etch-and-rinse adhesive systems but failed more often in self-etch systems. Silica-modified alumina and mixed abrasive systems showed improvements in bonding performance. Optimal APA parameters were identified as 50 μm particle size, 60 psi (4 bar) air pressure and 5 s exposure time. Longer exposure times provided no additional benefit. Self-etch systems showed reduced bond strength compared to etch-and-rinse systems. <b>Conclusions</b>: This review looks at how particle type, size and air pressure affect dentin adhesion. Bioactive glass is a superior material due to its bond strength and reduced cytotoxicity. The optimal APA parameters are 50 μm particle size, 60 psi and 5 s. Etch-and-rinse systems are recommended for optimal adhesion. Further research is required on APA protocols and long-term durability.</p>","PeriodicalId":11269,"journal":{"name":"Dentistry Journal","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj13010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Air particle abrasion (APA) is a common surface preparation method in dentistry, particularly for improving bond strength to dentin. This review evaluates the influence of APA on dentin adhesion. Methods: A systematic literature search from 2018 to 2023 was conducted according to PRISMA-ScR guidelines. Articles investigating the effects of APA on dentin adhesion using different particle types, sizes and adhesive systems were included. Data extraction included particle size, air pressure, outcomes tested and failure modes. Results: Fourteen primary studies met the criteria. Bioactive glass showed higher bond strength and more cohesive failures than alumina. Alumina particles (50 μm) bonded effectively in etch-and-rinse adhesive systems but failed more often in self-etch systems. Silica-modified alumina and mixed abrasive systems showed improvements in bonding performance. Optimal APA parameters were identified as 50 μm particle size, 60 psi (4 bar) air pressure and 5 s exposure time. Longer exposure times provided no additional benefit. Self-etch systems showed reduced bond strength compared to etch-and-rinse systems. Conclusions: This review looks at how particle type, size and air pressure affect dentin adhesion. Bioactive glass is a superior material due to its bond strength and reduced cytotoxicity. The optimal APA parameters are 50 μm particle size, 60 psi and 5 s. Etch-and-rinse systems are recommended for optimal adhesion. Further research is required on APA protocols and long-term durability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dentistry Journal
Dentistry Journal Dentistry-Dentistry (all)
CiteScore
3.70
自引率
7.70%
发文量
213
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信