Impact of High Glucose on Bone Collagenous Matrix Composition, Structure, and Organization: An Integrative Analysis Using an Ex Vivo Model.

IF 5.1 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-01-17 DOI:10.3390/cells14020130
Rita Araújo, Ricardo N M J Páscoa, Raquel Bernardino, Pedro S Gomes
{"title":"Impact of High Glucose on Bone Collagenous Matrix Composition, Structure, and Organization: An Integrative Analysis Using an Ex Vivo Model.","authors":"Rita Araújo, Ricardo N M J Páscoa, Raquel Bernardino, Pedro S Gomes","doi":"10.3390/cells14020130","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is a widespread metabolic disorder linked to numerous systemic complications, including adverse effects on skeletal health, such as increased bone fragility and fracture risk. Emerging evidence suggests that high glucose may disrupt the extracellular matrix (ECM) of bone, potentially altering its composition and organization. Collagen, the primary organic component of the ECM, is critical for maintaining structural integrity and biomechanical properties. However, definitive evidence and a comprehensive understanding of the molecular mechanisms through which high glucose impacts the ECM and collagen remain elusive. This study employed an ex vivo embryonic chicken femur model to investigate the effects of high glucose on the collagenous matrix. A comprehensive approach integrating histological evaluation, histomorphometry, ATR-FTIR spectroscopy, and proteomics was adopted to unravel structural, biochemical, and molecular changes in the ECM. Histomorphometric analysis revealed disrupted collagen fibril architecture, characterized by altered fibril diameter, alignment, and spatial organization. ATR-FTIR spectroscopy highlighted biochemical modifications, including non-enzymatic glycation that impaired collagen crosslinking and reduced matrix integrity. Proteomic profiling unveiled significant alterations in ECM composition and function, including downregulation of key collagen crosslinking enzymes and upregulation of inflammatory and coagulation pathways. High glucose profoundly disrupts the collagenous matrix of bone, weakening its structural integrity and organization. These findings emphasize the critical impact of high glucose environments on extracellular matrix composition and bone quality, offering insights into the mechanisms behind diabetic bone fragility and guiding future research toward targeted therapeutic strategies.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14020130","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus is a widespread metabolic disorder linked to numerous systemic complications, including adverse effects on skeletal health, such as increased bone fragility and fracture risk. Emerging evidence suggests that high glucose may disrupt the extracellular matrix (ECM) of bone, potentially altering its composition and organization. Collagen, the primary organic component of the ECM, is critical for maintaining structural integrity and biomechanical properties. However, definitive evidence and a comprehensive understanding of the molecular mechanisms through which high glucose impacts the ECM and collagen remain elusive. This study employed an ex vivo embryonic chicken femur model to investigate the effects of high glucose on the collagenous matrix. A comprehensive approach integrating histological evaluation, histomorphometry, ATR-FTIR spectroscopy, and proteomics was adopted to unravel structural, biochemical, and molecular changes in the ECM. Histomorphometric analysis revealed disrupted collagen fibril architecture, characterized by altered fibril diameter, alignment, and spatial organization. ATR-FTIR spectroscopy highlighted biochemical modifications, including non-enzymatic glycation that impaired collagen crosslinking and reduced matrix integrity. Proteomic profiling unveiled significant alterations in ECM composition and function, including downregulation of key collagen crosslinking enzymes and upregulation of inflammatory and coagulation pathways. High glucose profoundly disrupts the collagenous matrix of bone, weakening its structural integrity and organization. These findings emphasize the critical impact of high glucose environments on extracellular matrix composition and bone quality, offering insights into the mechanisms behind diabetic bone fragility and guiding future research toward targeted therapeutic strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信