Application of Ultrasound Radiomics in Differentiating Benign from Malignant Breast Nodules in Women with Post-Silicone Breast Augmentation.

IF 2.8 4区 医学 Q2 ONCOLOGY
Ling Hao, Yang Chen, Xuejiao Su, Buyun Ma
{"title":"Application of Ultrasound Radiomics in Differentiating Benign from Malignant Breast Nodules in Women with Post-Silicone Breast Augmentation.","authors":"Ling Hao, Yang Chen, Xuejiao Su, Buyun Ma","doi":"10.3390/curroncol32010029","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the diagnostic value of ultrasound radiomics in distinguishing between benign and malignant breast nodules in women who have undergone silicone breast augmentation.</p><p><strong>Methods: </strong>A retrospective study was conducted of 99 breast nodules detected by ultrasound in 93 women who had undergone silicone breast augmentation. The ultrasound data were collected between 1 January 2006 and 1 September 2023. The nodules were allocated into a training set (<i>n</i> = 69) and a validation set (<i>n</i> = 30). Regions of interest (ROIs) were manually delineated using 3D Slicer software, and radiomic features were extracted and selected using Python programming. Eight machine learning algorithms were applied to build predictive models, and their performance was assessed using sensitivity, specificity, area under the ROC curve (AUC), accuracy, Brier score, and log loss. Model performance was further evaluated using ROC curves and calibration curves, while clinical utility was assessed via decision curve analysis (DCA).</p><p><strong>Results: </strong>The random forest model exhibited superior performance in differentiating benign from malignant nodules in the validation set, achieving sensitivity of 0.765, specificity of 0.838, and an AUC of 0.787 (95% CI: 0.561-0.960). The model's accuracy, Brier score, and log loss were 0.796, 0.197, and 0.599, respectively. DCA suggested potential clinical utility of the model.</p><p><strong>Conclusion: </strong>Ultrasound radiomics demonstrates promising diagnostic accuracy in differentiating benign from malignant breast nodules in women with silicone breast prostheses. This approach has the potential to serve as an additional diagnostic tool for patients following silicone breast augmentation.</p>","PeriodicalId":11012,"journal":{"name":"Current oncology","volume":"32 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/curroncol32010029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To evaluate the diagnostic value of ultrasound radiomics in distinguishing between benign and malignant breast nodules in women who have undergone silicone breast augmentation.

Methods: A retrospective study was conducted of 99 breast nodules detected by ultrasound in 93 women who had undergone silicone breast augmentation. The ultrasound data were collected between 1 January 2006 and 1 September 2023. The nodules were allocated into a training set (n = 69) and a validation set (n = 30). Regions of interest (ROIs) were manually delineated using 3D Slicer software, and radiomic features were extracted and selected using Python programming. Eight machine learning algorithms were applied to build predictive models, and their performance was assessed using sensitivity, specificity, area under the ROC curve (AUC), accuracy, Brier score, and log loss. Model performance was further evaluated using ROC curves and calibration curves, while clinical utility was assessed via decision curve analysis (DCA).

Results: The random forest model exhibited superior performance in differentiating benign from malignant nodules in the validation set, achieving sensitivity of 0.765, specificity of 0.838, and an AUC of 0.787 (95% CI: 0.561-0.960). The model's accuracy, Brier score, and log loss were 0.796, 0.197, and 0.599, respectively. DCA suggested potential clinical utility of the model.

Conclusion: Ultrasound radiomics demonstrates promising diagnostic accuracy in differentiating benign from malignant breast nodules in women with silicone breast prostheses. This approach has the potential to serve as an additional diagnostic tool for patients following silicone breast augmentation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current oncology
Current oncology ONCOLOGY-
CiteScore
3.30
自引率
7.70%
发文量
664
审稿时长
1 months
期刊介绍: Current Oncology is a peer-reviewed, Canadian-based and internationally respected journal. Current Oncology represents a multidisciplinary medium encompassing health care workers in the field of cancer therapy in Canada to report upon and to review progress in the management of this disease. We encourage submissions from all fields of cancer medicine, including radiation oncology, surgical oncology, medical oncology, pediatric oncology, pathology, and cancer rehabilitation and survivorship. Articles published in the journal typically contain information that is relevant directly to clinical oncology practice, and have clear potential for application to the current or future practice of cancer medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信