The qualitative analysis of trabecular architecture of the proximal femur based on the P45 sectional plastination technique.

IF 1.8 3区 医学 Q2 ANATOMY & MORPHOLOGY
Jian-Fei Zhang, Shu-Jun Lü, Jia-Wei Wang, Wei Tang, Chan Li, Gilmore Campbell, Hong-Jin Sui, Sheng-Bo Yu, De-Wei Zhao
{"title":"The qualitative analysis of trabecular architecture of the proximal femur based on the P45 sectional plastination technique.","authors":"Jian-Fei Zhang, Shu-Jun Lü, Jia-Wei Wang, Wei Tang, Chan Li, Gilmore Campbell, Hong-Jin Sui, Sheng-Bo Yu, De-Wei Zhao","doi":"10.1111/joa.14210","DOIUrl":null,"url":null,"abstract":"<p><p>The primary weight-bearing structure of the proximal femur, trabecular bone, has a complex three-dimensional architecture that was previously difficult to comprehensively display. This study examined the spatial architecture of trabecular struts in the coronal, sagittal, and horizontal sections of the proximal femur using 21 cases prepared with P45 sectional plasticization. The primary compressive strut (PCS) exhibited a \"mushroom-like\" shape with upper and lower parts. The lower part extended from the medial inferior cortical bone of the femoral neck to the central region of the femoral head, while the upper part radiated from the epiphyseal line to the subchondral cortical bone of the femoral head. The secondary compressive strut (SCS), originated below the distal end of the PCS, ran diagonally upward, and intersected with the secondary tensile strut (STS) within the greater trochanter. The primary tensile strut (PTS) comprised anterior (aPTS) and posterior (pPTS) components originating from the anterior- and posterior-superior cortical bone of the femoral neck. These converged, entered the femoral head, intersected with the PCS beneath the epiphyseal line, forming a dense trabecular center, and terminated at the subchondral cortical bone below the fovea of the femoral head. The secondary tensile strut (STS) originated from the cortical bone around the lower edge of the greater trochanter, converging upwards and medially to terminate at the superior cortical bone of the femoral neck. The trabecular system of the proximal femur consists of two subsystems: one between the femoral head and neck, and another between the femoral neck and shaft. The head-neck system comprises intersecting PCS, aPTS, and pPTS, facilitating stress transmission. The neck-shaft system features intersecting STS and SCS, enabling stress transmission between these regions. These independent systems are separated by Ward's triangle. The findings of this study offer anatomical guidance for the improvement of internal fixation methods, orthopedic implants, and the design of surgical robots.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The primary weight-bearing structure of the proximal femur, trabecular bone, has a complex three-dimensional architecture that was previously difficult to comprehensively display. This study examined the spatial architecture of trabecular struts in the coronal, sagittal, and horizontal sections of the proximal femur using 21 cases prepared with P45 sectional plasticization. The primary compressive strut (PCS) exhibited a "mushroom-like" shape with upper and lower parts. The lower part extended from the medial inferior cortical bone of the femoral neck to the central region of the femoral head, while the upper part radiated from the epiphyseal line to the subchondral cortical bone of the femoral head. The secondary compressive strut (SCS), originated below the distal end of the PCS, ran diagonally upward, and intersected with the secondary tensile strut (STS) within the greater trochanter. The primary tensile strut (PTS) comprised anterior (aPTS) and posterior (pPTS) components originating from the anterior- and posterior-superior cortical bone of the femoral neck. These converged, entered the femoral head, intersected with the PCS beneath the epiphyseal line, forming a dense trabecular center, and terminated at the subchondral cortical bone below the fovea of the femoral head. The secondary tensile strut (STS) originated from the cortical bone around the lower edge of the greater trochanter, converging upwards and medially to terminate at the superior cortical bone of the femoral neck. The trabecular system of the proximal femur consists of two subsystems: one between the femoral head and neck, and another between the femoral neck and shaft. The head-neck system comprises intersecting PCS, aPTS, and pPTS, facilitating stress transmission. The neck-shaft system features intersecting STS and SCS, enabling stress transmission between these regions. These independent systems are separated by Ward's triangle. The findings of this study offer anatomical guidance for the improvement of internal fixation methods, orthopedic implants, and the design of surgical robots.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Anatomy
Journal of Anatomy 医学-解剖学与形态学
CiteScore
4.80
自引率
8.30%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system. Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract. We particularly welcome submissions in the following areas: Cell biology and tissue architecture Comparative functional morphology Developmental biology Evolutionary developmental biology Evolutionary morphology Functional human anatomy Integrative vertebrate paleontology Methodological innovations in anatomical research Musculoskeletal system Neuroanatomy and neurodegeneration Significant advances in anatomical education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信