{"title":"Thompson Sampling for Non-Stationary Bandit Problems.","authors":"Han Qi, Fei Guo, Li Zhu","doi":"10.3390/e27010051","DOIUrl":null,"url":null,"abstract":"<p><p>Non-stationary multi-armed bandit (MAB) problems have recently attracted extensive attention. We focus on the abruptly changing scenario where reward distributions remain constant for a certain period and change at unknown time steps. Although Thompson sampling (TS) has shown success in non-stationary settings, there is currently no regret bound analysis for TS with uninformative priors. To address this, we propose two algorithms, discounted TS and sliding-window TS, designed for sub-Gaussian reward distributions. For these algorithms, we establish an upper bound for the expected regret by bounding the expected number of times a suboptimal arm is played. We show that the regret upper bounds of both algorithms are O~(TBT), where <i>T</i> is the time horizon and BT is the number of breakpoints. This upper bound matches the lower bound for abruptly changing problems up to a logarithmic factor. Empirical comparisons with other non-stationary bandit algorithms highlight the competitive performance of our proposed methods.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010051","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-stationary multi-armed bandit (MAB) problems have recently attracted extensive attention. We focus on the abruptly changing scenario where reward distributions remain constant for a certain period and change at unknown time steps. Although Thompson sampling (TS) has shown success in non-stationary settings, there is currently no regret bound analysis for TS with uninformative priors. To address this, we propose two algorithms, discounted TS and sliding-window TS, designed for sub-Gaussian reward distributions. For these algorithms, we establish an upper bound for the expected regret by bounding the expected number of times a suboptimal arm is played. We show that the regret upper bounds of both algorithms are O~(TBT), where T is the time horizon and BT is the number of breakpoints. This upper bound matches the lower bound for abruptly changing problems up to a logarithmic factor. Empirical comparisons with other non-stationary bandit algorithms highlight the competitive performance of our proposed methods.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.