VFL-Cafe: Communication-Efficient Vertical Federated Learning via Dynamic Caching and Feature Selection.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-01-14 DOI:10.3390/e27010066
Jiahui Zhou, Han Liang, Tian Wu, Xiaoxi Zhang, Yu Jiang, Chee Wei Tan
{"title":"<i>VFL-Cafe</i>: Communication-Efficient Vertical Federated Learning via Dynamic Caching and Feature Selection.","authors":"Jiahui Zhou, Han Liang, Tian Wu, Xiaoxi Zhang, Yu Jiang, Chee Wei Tan","doi":"10.3390/e27010066","DOIUrl":null,"url":null,"abstract":"<p><p>Vertical Federated Learning (VFL) is a promising category of Federated Learning that enables collaborative model training among distributed parties with data privacy protection. Due to its unique training architecture, a key challenge of VFL is high communication cost due to transmitting intermediate results between the Active Party and Passive Parties. Current communication-efficient VFL methods rely on using stale results without meticulous selection, which can impair model accuracy, particularly in noisy data environments. To address these limitations, this work proposes <i>VFL-Cafe</i>, a new VFL training method that leverages dynamic caching and feature selection to boost communication efficiency and model accuracy. In each communication round, the employed caching scheme allows multiple batches of intermediate results to be cached and strategically reused by different parties, reducing the communication overhead while maintaining model accuracy. Additionally, to eliminate the negative impact of noisy features that may undermine the effectiveness of using stale results to reduce communication rounds and incur significant model degradation, a feature selection strategy is integrated into each round of local updates. Theoretical analysis is then conducted to provide guidance on cache configuration, optimizing performance. Finally, extensive experimental results validate <i>VFL-Cafe</i>'s efficacy, demonstrating remarkable improvements in communication efficiency and model accuracy.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010066","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vertical Federated Learning (VFL) is a promising category of Federated Learning that enables collaborative model training among distributed parties with data privacy protection. Due to its unique training architecture, a key challenge of VFL is high communication cost due to transmitting intermediate results between the Active Party and Passive Parties. Current communication-efficient VFL methods rely on using stale results without meticulous selection, which can impair model accuracy, particularly in noisy data environments. To address these limitations, this work proposes VFL-Cafe, a new VFL training method that leverages dynamic caching and feature selection to boost communication efficiency and model accuracy. In each communication round, the employed caching scheme allows multiple batches of intermediate results to be cached and strategically reused by different parties, reducing the communication overhead while maintaining model accuracy. Additionally, to eliminate the negative impact of noisy features that may undermine the effectiveness of using stale results to reduce communication rounds and incur significant model degradation, a feature selection strategy is integrated into each round of local updates. Theoretical analysis is then conducted to provide guidance on cache configuration, optimizing performance. Finally, extensive experimental results validate VFL-Cafe's efficacy, demonstrating remarkable improvements in communication efficiency and model accuracy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信