Jiahui Zhou, Han Liang, Tian Wu, Xiaoxi Zhang, Yu Jiang, Chee Wei Tan
{"title":"<i>VFL-Cafe</i>: Communication-Efficient Vertical Federated Learning via Dynamic Caching and Feature Selection.","authors":"Jiahui Zhou, Han Liang, Tian Wu, Xiaoxi Zhang, Yu Jiang, Chee Wei Tan","doi":"10.3390/e27010066","DOIUrl":null,"url":null,"abstract":"<p><p>Vertical Federated Learning (VFL) is a promising category of Federated Learning that enables collaborative model training among distributed parties with data privacy protection. Due to its unique training architecture, a key challenge of VFL is high communication cost due to transmitting intermediate results between the Active Party and Passive Parties. Current communication-efficient VFL methods rely on using stale results without meticulous selection, which can impair model accuracy, particularly in noisy data environments. To address these limitations, this work proposes <i>VFL-Cafe</i>, a new VFL training method that leverages dynamic caching and feature selection to boost communication efficiency and model accuracy. In each communication round, the employed caching scheme allows multiple batches of intermediate results to be cached and strategically reused by different parties, reducing the communication overhead while maintaining model accuracy. Additionally, to eliminate the negative impact of noisy features that may undermine the effectiveness of using stale results to reduce communication rounds and incur significant model degradation, a feature selection strategy is integrated into each round of local updates. Theoretical analysis is then conducted to provide guidance on cache configuration, optimizing performance. Finally, extensive experimental results validate <i>VFL-Cafe</i>'s efficacy, demonstrating remarkable improvements in communication efficiency and model accuracy.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010066","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Vertical Federated Learning (VFL) is a promising category of Federated Learning that enables collaborative model training among distributed parties with data privacy protection. Due to its unique training architecture, a key challenge of VFL is high communication cost due to transmitting intermediate results between the Active Party and Passive Parties. Current communication-efficient VFL methods rely on using stale results without meticulous selection, which can impair model accuracy, particularly in noisy data environments. To address these limitations, this work proposes VFL-Cafe, a new VFL training method that leverages dynamic caching and feature selection to boost communication efficiency and model accuracy. In each communication round, the employed caching scheme allows multiple batches of intermediate results to be cached and strategically reused by different parties, reducing the communication overhead while maintaining model accuracy. Additionally, to eliminate the negative impact of noisy features that may undermine the effectiveness of using stale results to reduce communication rounds and incur significant model degradation, a feature selection strategy is integrated into each round of local updates. Theoretical analysis is then conducted to provide guidance on cache configuration, optimizing performance. Finally, extensive experimental results validate VFL-Cafe's efficacy, demonstrating remarkable improvements in communication efficiency and model accuracy.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.