{"title":"The Second Law of Infodynamics: A Thermocontextual Reformulation.","authors":"Harrison Crecraft","doi":"10.3390/e27010022","DOIUrl":null,"url":null,"abstract":"<p><p>Vopson and Lepadatu recently proposed the Second Law of Infodynamics. The law states that while the total entropy increases, information entropy declines over time. They state that the law has applications over a wide range of disciplines, but they leave many key questions unanswered. This article analyzes and reformulates the law based on thermocontextual interpretation (TCI). The TCI generalizes Hamiltonian mechanics by defining states and transitions thermocontextually with respect to an ambient-temperature reference state. The TCI partitions energy into exergy, which can do work on the ambient surroundings, and entropic energy with zero work potential. The TCI is further generalized here to account for a reference observer's actual knowledge. This enables partitioning exergy into accessible exergy, which is known and accessible for use, and configurational energy, which is knowable but unknown and inaccessible. The TCI is firmly based on empirically validated postulates. The Second Law of thermodynamics and its information-based analog, MaxEnt, are logically derived corollaries. Another corollary is a reformulated Second Law of Infodynamics. It states that an external agent seeks to increase its access to exergy by narrowing its information gap with a potential exergy source. The principle is key to the origin of self-replicating chemicals and life.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010022","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Vopson and Lepadatu recently proposed the Second Law of Infodynamics. The law states that while the total entropy increases, information entropy declines over time. They state that the law has applications over a wide range of disciplines, but they leave many key questions unanswered. This article analyzes and reformulates the law based on thermocontextual interpretation (TCI). The TCI generalizes Hamiltonian mechanics by defining states and transitions thermocontextually with respect to an ambient-temperature reference state. The TCI partitions energy into exergy, which can do work on the ambient surroundings, and entropic energy with zero work potential. The TCI is further generalized here to account for a reference observer's actual knowledge. This enables partitioning exergy into accessible exergy, which is known and accessible for use, and configurational energy, which is knowable but unknown and inaccessible. The TCI is firmly based on empirically validated postulates. The Second Law of thermodynamics and its information-based analog, MaxEnt, are logically derived corollaries. Another corollary is a reformulated Second Law of Infodynamics. It states that an external agent seeks to increase its access to exergy by narrowing its information gap with a potential exergy source. The principle is key to the origin of self-replicating chemicals and life.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.