Persistent Homology Combined with Machine Learning for Social Network Activity Analysis.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-12-30 DOI:10.3390/e27010019
Zhijian Zhang, Yuqing Sun, Yayun Liu, Lin Jiang, Zhengmi Li
{"title":"Persistent Homology Combined with Machine Learning for Social Network Activity Analysis.","authors":"Zhijian Zhang, Yuqing Sun, Yayun Liu, Lin Jiang, Zhengmi Li","doi":"10.3390/e27010019","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, the rapid development of social media enables people to communicate more and more frequently in the network. Classifying user activities in social networks helps to better understand user behavior in social networks. This paper first creates an ego network for each user, encodes the higher-order topological features of the ego network as persistence diagrams using persistence homology, and computes the persistence entropy. Then, based on the persistence entropy, this paper defines the Norm Entropy-NE(X) to represent the complexity of the topological features of the ego network, a larger NE(X) indicates a higher topological complexity, i.e., the higher the activity of the nodes, thus indicating the degree of activity of the nodes. The paper uses the extracted set of feature vectors to train the machine learning model to classify the users in the social network. Numerical experiments are conducted to evaluate the performance of clustering quality metrics such as profile coefficients. The results show that the proposed algorithm can effectively classify social network users into different groups, which provides a good foundation for further research and application.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010019","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the rapid development of social media enables people to communicate more and more frequently in the network. Classifying user activities in social networks helps to better understand user behavior in social networks. This paper first creates an ego network for each user, encodes the higher-order topological features of the ego network as persistence diagrams using persistence homology, and computes the persistence entropy. Then, based on the persistence entropy, this paper defines the Norm Entropy-NE(X) to represent the complexity of the topological features of the ego network, a larger NE(X) indicates a higher topological complexity, i.e., the higher the activity of the nodes, thus indicating the degree of activity of the nodes. The paper uses the extracted set of feature vectors to train the machine learning model to classify the users in the social network. Numerical experiments are conducted to evaluate the performance of clustering quality metrics such as profile coefficients. The results show that the proposed algorithm can effectively classify social network users into different groups, which provides a good foundation for further research and application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信