A Novel Hybrid Improved RIME Algorithm for Global Optimization Problems.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Wuke Li, Xiong Yang, Yuchen Yin, Qian Wang
{"title":"A Novel Hybrid Improved RIME Algorithm for Global Optimization Problems.","authors":"Wuke Li, Xiong Yang, Yuchen Yin, Qian Wang","doi":"10.3390/biomimetics10010014","DOIUrl":null,"url":null,"abstract":"<p><p>The RIME algorithm is a novel physical-based meta-heuristic algorithm with a strong ability to solve global optimization problems and address challenges in engineering applications. It implements exploration and exploitation behaviors by constructing a rime-ice growth process. However, RIME comes with a couple of disadvantages: a limited exploratory capability, slow convergence, and inherent asymmetry between exploration and exploitation. An improved version with more efficiency and adaptability to solve these issues now comes in the form of Hybrid Estimation Rime-ice Optimization, in short, HERIME. A probabilistic model-based sampling approach of the estimated distribution algorithm is utilized to enhance the quality of the RIME population and boost its global exploration capability. A roulette-based fitness distance balanced selection strategy is used to strengthen the hard-rime phase of RIME to effectively enhance the balance between the exploitation and exploration phases of the optimization process. We validate HERIME using 41 functions from the IEEE CEC2017 and IEEE CEC2022 test suites and compare its optimization accuracy, convergence, and stability with four classical and recent metaheuristic algorithms as well as five advanced algorithms to reveal the fact that the proposed algorithm outperforms all of them. Statistical research using the Friedman test and Wilcoxon rank sum test also confirms its excellent performance. Moreover, ablation experiments validate the effectiveness of each strategy individually. Thus, the experimental results show that HERIME has better search efficiency and optimization accuracy and is effective in dealing with global optimization problems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010014","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The RIME algorithm is a novel physical-based meta-heuristic algorithm with a strong ability to solve global optimization problems and address challenges in engineering applications. It implements exploration and exploitation behaviors by constructing a rime-ice growth process. However, RIME comes with a couple of disadvantages: a limited exploratory capability, slow convergence, and inherent asymmetry between exploration and exploitation. An improved version with more efficiency and adaptability to solve these issues now comes in the form of Hybrid Estimation Rime-ice Optimization, in short, HERIME. A probabilistic model-based sampling approach of the estimated distribution algorithm is utilized to enhance the quality of the RIME population and boost its global exploration capability. A roulette-based fitness distance balanced selection strategy is used to strengthen the hard-rime phase of RIME to effectively enhance the balance between the exploitation and exploration phases of the optimization process. We validate HERIME using 41 functions from the IEEE CEC2017 and IEEE CEC2022 test suites and compare its optimization accuracy, convergence, and stability with four classical and recent metaheuristic algorithms as well as five advanced algorithms to reveal the fact that the proposed algorithm outperforms all of them. Statistical research using the Friedman test and Wilcoxon rank sum test also confirms its excellent performance. Moreover, ablation experiments validate the effectiveness of each strategy individually. Thus, the experimental results show that HERIME has better search efficiency and optimization accuracy and is effective in dealing with global optimization problems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信