Eco-Friendly Hydrogels Loading Polyphenols-Composed Biomimetic Micelles for Topical Administration of Resveratrol and Rutin.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Beatriz N Guedes, Tatiana Andreani, M Beatriz P P Oliveira, Faezeh Fathi, Eliana B Souto
{"title":"Eco-Friendly Hydrogels Loading Polyphenols-Composed Biomimetic Micelles for Topical Administration of Resveratrol and Rutin.","authors":"Beatriz N Guedes, Tatiana Andreani, M Beatriz P P Oliveira, Faezeh Fathi, Eliana B Souto","doi":"10.3390/biomimetics10010008","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we describe the development of hydrogel formulations composed of micelles loading two natural antioxidants-resveratrol and rutin-and the evaluation of the effect of a by-product on the rheological and textural properties of the developed semi-solids. This approach aims to associate the advantages of hydrogels for topical administration of drugs and of lipid micelles that mimic skin composition for the delivery of poorly water-soluble compounds in combination therapy. Biomimetic micelles composed of L-α-phosphatidylcholine loaded with two distinct polyphenols (one non-flavonoid and one flavonoid) were produced using hot shear homogenisation followed by the ultrasonication method. All developed micelles were dispersed in a carbomer 940-based hydrogel to obtain three distinct semi-solid formulations, which were then characterised by analysing the thermal, rheological and textural properties. Olive pomace-based hydrogels were also produced to contain the same micelles as an alternative to respond to the needs of zero waste and circular economy. The thermograms showed no changes in the typical profiles of micelles when loaded into the hydrogels. The rheological analysis confirmed that the produced hydrogels achieved the ideal properties of a semi-solid product for topical administration. The viscosity values of the hydrogels loaded with olive pomace (hydrogels A) proved to be lower than the hydrogels without olive pomace (hydrogels B), with this ingredient having a considerable effect in reducing the viscosity of the final formulation, yet without compromising the firmness and cohesiveness of the gels. The texture analysis of both hydrogels A and B also exhibited the typical behaviour expected of a semi-solid system.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we describe the development of hydrogel formulations composed of micelles loading two natural antioxidants-resveratrol and rutin-and the evaluation of the effect of a by-product on the rheological and textural properties of the developed semi-solids. This approach aims to associate the advantages of hydrogels for topical administration of drugs and of lipid micelles that mimic skin composition for the delivery of poorly water-soluble compounds in combination therapy. Biomimetic micelles composed of L-α-phosphatidylcholine loaded with two distinct polyphenols (one non-flavonoid and one flavonoid) were produced using hot shear homogenisation followed by the ultrasonication method. All developed micelles were dispersed in a carbomer 940-based hydrogel to obtain three distinct semi-solid formulations, which were then characterised by analysing the thermal, rheological and textural properties. Olive pomace-based hydrogels were also produced to contain the same micelles as an alternative to respond to the needs of zero waste and circular economy. The thermograms showed no changes in the typical profiles of micelles when loaded into the hydrogels. The rheological analysis confirmed that the produced hydrogels achieved the ideal properties of a semi-solid product for topical administration. The viscosity values of the hydrogels loaded with olive pomace (hydrogels A) proved to be lower than the hydrogels without olive pomace (hydrogels B), with this ingredient having a considerable effect in reducing the viscosity of the final formulation, yet without compromising the firmness and cohesiveness of the gels. The texture analysis of both hydrogels A and B also exhibited the typical behaviour expected of a semi-solid system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信