Multi-Agent Hierarchical Graph Attention Actor-Critic Reinforcement Learning.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-12-25 DOI:10.3390/e27010004
Tongyue Li, Dianxi Shi, Songchang Jin, Zhen Wang, Huanhuan Yang, Yang Chen
{"title":"Multi-Agent Hierarchical Graph Attention Actor-Critic Reinforcement Learning.","authors":"Tongyue Li, Dianxi Shi, Songchang Jin, Zhen Wang, Huanhuan Yang, Yang Chen","doi":"10.3390/e27010004","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-agent systems often face challenges such as elevated communication demands, intricate interactions, and difficulties in transferability. To address the issues of complex information interaction and model scalability, we propose an innovative hierarchical graph attention actor-critic reinforcement learning method. This method naturally models the interactions within a multi-agent system as a graph, employing hierarchical graph attention to capture the complex cooperative and competitive relationships among agents, thereby enhancing their adaptability to dynamic environments. Specifically, graph neural networks encode agent observations as single feature-embedding vectors, maintaining a constant dimensionality irrespective of the number of agents, which improves model scalability. Through the \"inter-agent\" and \"inter-group\" attention layers, the embedding vector of each agent is updated into an information-condensed and contextualized state representation, which extracts state-dependent relationships between agents and model interactions at both individual and group levels. We conducted experiments across several multi-agent tasks to assess our proposed method's effectiveness, stability, and scalability. Furthermore, to enhance the applicability of our method in large-scale tasks, we tested and validated its performance within a curriculum learning training framework, thereby enhancing its transferability.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010004","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-agent systems often face challenges such as elevated communication demands, intricate interactions, and difficulties in transferability. To address the issues of complex information interaction and model scalability, we propose an innovative hierarchical graph attention actor-critic reinforcement learning method. This method naturally models the interactions within a multi-agent system as a graph, employing hierarchical graph attention to capture the complex cooperative and competitive relationships among agents, thereby enhancing their adaptability to dynamic environments. Specifically, graph neural networks encode agent observations as single feature-embedding vectors, maintaining a constant dimensionality irrespective of the number of agents, which improves model scalability. Through the "inter-agent" and "inter-group" attention layers, the embedding vector of each agent is updated into an information-condensed and contextualized state representation, which extracts state-dependent relationships between agents and model interactions at both individual and group levels. We conducted experiments across several multi-agent tasks to assess our proposed method's effectiveness, stability, and scalability. Furthermore, to enhance the applicability of our method in large-scale tasks, we tested and validated its performance within a curriculum learning training framework, thereby enhancing its transferability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信