Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Mingen Wang, Panliang Yuan, Pengfei Hu, Zhengrong Yang, Shuai Ke, Longliang Huang, Pai Zhang
{"title":"Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning.","authors":"Mingen Wang, Panliang Yuan, Pengfei Hu, Zhengrong Yang, Shuai Ke, Longliang Huang, Pai Zhang","doi":"10.3390/biomimetics10010031","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, unmanned aerial vehicle (UAV) technology has advanced significantly, enabling its widespread use in critical applications such as surveillance, search and rescue, and environmental monitoring. However, planning reliable, safe, and economical paths for UAVs in real-world environments remains a significant challenge. In this paper, we propose a multi-strategy improved red-tailed hawk (IRTH) algorithm for UAV path planning in real environments. First, we enhance the quality of the initial population in the algorithm by using a stochastic reverse learning strategy based on Bernoulli mapping. Then, the quality of the initial population is further improved through a dynamic position update optimization strategy based on stochastic mean fusion, which enhances the exploration capabilities of the algorithm and helps it explore promising solution spaces more effectively. Additionally, we proposed an optimization method for frontier position updates based on a trust domain, which better balances exploration and exploitation. To evaluate the effectiveness of the proposed algorithm, we compare it with 11 other algorithms using the IEEE CEC2017 test set and perform statistical analysis to assess differences. The experimental results demonstrate that the IRTH algorithm yields competitive performance. Finally, to validate its applicability in real-world scenarios, we apply the IRTH algorithm to the UAV path-planning problem in practical environments, achieving improved results and successfully performing path planning for UAVs.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010031","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, unmanned aerial vehicle (UAV) technology has advanced significantly, enabling its widespread use in critical applications such as surveillance, search and rescue, and environmental monitoring. However, planning reliable, safe, and economical paths for UAVs in real-world environments remains a significant challenge. In this paper, we propose a multi-strategy improved red-tailed hawk (IRTH) algorithm for UAV path planning in real environments. First, we enhance the quality of the initial population in the algorithm by using a stochastic reverse learning strategy based on Bernoulli mapping. Then, the quality of the initial population is further improved through a dynamic position update optimization strategy based on stochastic mean fusion, which enhances the exploration capabilities of the algorithm and helps it explore promising solution spaces more effectively. Additionally, we proposed an optimization method for frontier position updates based on a trust domain, which better balances exploration and exploitation. To evaluate the effectiveness of the proposed algorithm, we compare it with 11 other algorithms using the IEEE CEC2017 test set and perform statistical analysis to assess differences. The experimental results demonstrate that the IRTH algorithm yields competitive performance. Finally, to validate its applicability in real-world scenarios, we apply the IRTH algorithm to the UAV path-planning problem in practical environments, achieving improved results and successfully performing path planning for UAVs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信