Human-Inspired Gait and Jumping Motion Generation for Bipedal Robots Using Model Predictive Control.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Zhen Xu, Jianan Xie, Kenji Hashimoto
{"title":"Human-Inspired Gait and Jumping Motion Generation for Bipedal Robots Using Model Predictive Control.","authors":"Zhen Xu, Jianan Xie, Kenji Hashimoto","doi":"10.3390/biomimetics10010017","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, humanoid robot technology has been developing rapidly due to the need for robots to collaborate with humans or replace them in various tasks, requiring them to operate in complex human environments and placing high demands on their mobility. Developing humanoid robots with human-like walking and hopping abilities has become a key research focus, as these capabilities enable robots to move and perform tasks more efficiently in diverse and unpredictable environments, with significant applications in daily life, industrial operations, and disaster rescue. Currently, methods based on hybrid zero dynamics and reinforcement learning have been employed to enhance the walking and hopping capabilities of humanoid robots; however, model predictive control (MPC) presents two significant advantages: it can adapt to more complex task requirements and environmental conditions, and it allows for various walking and hopping patterns without extensive training and redesign. The objective of this study is to develop a bipedal robot controller using shooting method-based MPC to achieve human-like walking and hopping abilities, aiming to address the limitations of the existing methods and provide a new approach to enhancing robot mobility.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, humanoid robot technology has been developing rapidly due to the need for robots to collaborate with humans or replace them in various tasks, requiring them to operate in complex human environments and placing high demands on their mobility. Developing humanoid robots with human-like walking and hopping abilities has become a key research focus, as these capabilities enable robots to move and perform tasks more efficiently in diverse and unpredictable environments, with significant applications in daily life, industrial operations, and disaster rescue. Currently, methods based on hybrid zero dynamics and reinforcement learning have been employed to enhance the walking and hopping capabilities of humanoid robots; however, model predictive control (MPC) presents two significant advantages: it can adapt to more complex task requirements and environmental conditions, and it allows for various walking and hopping patterns without extensive training and redesign. The objective of this study is to develop a bipedal robot controller using shooting method-based MPC to achieve human-like walking and hopping abilities, aiming to address the limitations of the existing methods and provide a new approach to enhancing robot mobility.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信