FE-YOLO: An Efficient Deep Learning Model Based on Feature-Enhanced YOLOv7 for Microalgae Identification and Detection.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Gege Ding, Yuhang Shi, Zhenquan Liu, Yanjuan Wang, Zhixuan Yao, Dan Zhou, Xuexiu Zhu, Yiqin Li
{"title":"FE-YOLO: An Efficient Deep Learning Model Based on Feature-Enhanced YOLOv7 for Microalgae Identification and Detection.","authors":"Gege Ding, Yuhang Shi, Zhenquan Liu, Yanjuan Wang, Zhixuan Yao, Dan Zhou, Xuexiu Zhu, Yiqin Li","doi":"10.3390/biomimetics10010062","DOIUrl":null,"url":null,"abstract":"<p><p>The identification and detection of microalgae are essential for the development and utilization of microalgae resources. Traditional methods for microalgae identification and detection have many limitations. Herein, a Feature-Enhanced YOLOv7 (FE-YOLO) model for microalgae cell identification and detection is proposed. Firstly, the feature extraction capability was enhanced by integrating the CAGS (Coordinate Attention Group Shuffle Convolution) attention module into the Neck section. Secondly, the SIoU (SCYLLA-IoU) algorithm was employed to replace the CIoU (Complete IoU) loss function in the original model, addressing the issues of unstable convergence. Finally, we captured and constructed a microalgae dataset containing 6300 images of seven species of microalgae, addressing the issue of a lack of microalgae cell datasets. Compared to the YOLOv7 model, the proposed method shows greatly improved average Precision, Recall, mAP@50, and mAP@95; our proposed algorithm achieved increases of 9.6%, 1.9%, 9.7%, and 6.9%, respectively. In addition, the average detection time of a single image was 0.0455 s, marking a 9.2% improvement.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010062","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification and detection of microalgae are essential for the development and utilization of microalgae resources. Traditional methods for microalgae identification and detection have many limitations. Herein, a Feature-Enhanced YOLOv7 (FE-YOLO) model for microalgae cell identification and detection is proposed. Firstly, the feature extraction capability was enhanced by integrating the CAGS (Coordinate Attention Group Shuffle Convolution) attention module into the Neck section. Secondly, the SIoU (SCYLLA-IoU) algorithm was employed to replace the CIoU (Complete IoU) loss function in the original model, addressing the issues of unstable convergence. Finally, we captured and constructed a microalgae dataset containing 6300 images of seven species of microalgae, addressing the issue of a lack of microalgae cell datasets. Compared to the YOLOv7 model, the proposed method shows greatly improved average Precision, Recall, mAP@50, and mAP@95; our proposed algorithm achieved increases of 9.6%, 1.9%, 9.7%, and 6.9%, respectively. In addition, the average detection time of a single image was 0.0455 s, marking a 9.2% improvement.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信