Double Attention: An Optimization Method for the Self-Attention Mechanism Based on Human Attention.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Zeyu Zhang, Bin Li, Chenyang Yan, Kengo Furuichi, Yuki Todo
{"title":"Double Attention: An Optimization Method for the Self-Attention Mechanism Based on Human Attention.","authors":"Zeyu Zhang, Bin Li, Chenyang Yan, Kengo Furuichi, Yuki Todo","doi":"10.3390/biomimetics10010034","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence, with its remarkable adaptability, has gradually integrated into daily life. The emergence of the self-attention mechanism has propelled the Transformer architecture into diverse fields, including a role as an efficient and precise diagnostic and predictive tool in medicine. To enhance accuracy, we propose the Double-Attention (DA) method, which improves the neural network's biomimetic performance of human attention. By incorporating matrices generated from shifted images into the self-attention mechanism, the network gains the ability to preemptively acquire information from surrounding regions. Experimental results demonstrate the superior performance of our approaches across various benchmark datasets, validating their effectiveness. Furthermore, the method was applied to patient kidney datasets collected from hospitals for diabetes diagnosis, where they achieved high accuracy with significantly reduced computational demands. This advancement showcases the potential of our methods in the field of biomimetics, aligning well with the goals of developing innovative bioinspired diagnostic tools.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010034","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence, with its remarkable adaptability, has gradually integrated into daily life. The emergence of the self-attention mechanism has propelled the Transformer architecture into diverse fields, including a role as an efficient and precise diagnostic and predictive tool in medicine. To enhance accuracy, we propose the Double-Attention (DA) method, which improves the neural network's biomimetic performance of human attention. By incorporating matrices generated from shifted images into the self-attention mechanism, the network gains the ability to preemptively acquire information from surrounding regions. Experimental results demonstrate the superior performance of our approaches across various benchmark datasets, validating their effectiveness. Furthermore, the method was applied to patient kidney datasets collected from hospitals for diabetes diagnosis, where they achieved high accuracy with significantly reduced computational demands. This advancement showcases the potential of our methods in the field of biomimetics, aligning well with the goals of developing innovative bioinspired diagnostic tools.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信