Maria Gragnaniello, Vincenzo Romano Marrazzo, Alessandro Borghese, Luca Maresca, Giovanni Breglio, Michele Riccio
{"title":"Edge-AI Enabled Wearable Device for Non-Invasive Type 1 Diabetes Detection Using ECG Signals.","authors":"Maria Gragnaniello, Vincenzo Romano Marrazzo, Alessandro Borghese, Luca Maresca, Giovanni Breglio, Michele Riccio","doi":"10.3390/bioengineering12010004","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a chronic condition, and traditional monitoring methods are invasive, significantly reducing the quality of life of the patients. This study proposes the design of an innovative system based on a microcontroller that performs real-time ECG acquisition and evaluates the presence of diabetes using an Edge-AI solution. A spectrogram-based preprocessing method is combined with a 1-Dimensional Convolutional Neural Network (1D-CNN) to analyze the ECG signals directly on the device. By applying quantization as an optimization technique, the model effectively balances memory usage and accuracy, achieving an accuracy of 89.52% with an average precision and recall of 0.91 and 0.90, respectively. These results were obtained with a minimal memory footprint of 347 kB flash and 23 kB RAM, showcasing the system's suitability for wearable embedded devices. Furthermore, a custom PCB was developed to validate the system in a real-world scenario. The hardware integrates high-performance electronics with low power consumption, demonstrating the feasibility of deploying Edge-AI for non-invasive, real-time diabetes detection in resource-constrained environments. This design represents a significant step forward in improving the accessibility and practicality of diabetes monitoring.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762382/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12010004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes is a chronic condition, and traditional monitoring methods are invasive, significantly reducing the quality of life of the patients. This study proposes the design of an innovative system based on a microcontroller that performs real-time ECG acquisition and evaluates the presence of diabetes using an Edge-AI solution. A spectrogram-based preprocessing method is combined with a 1-Dimensional Convolutional Neural Network (1D-CNN) to analyze the ECG signals directly on the device. By applying quantization as an optimization technique, the model effectively balances memory usage and accuracy, achieving an accuracy of 89.52% with an average precision and recall of 0.91 and 0.90, respectively. These results were obtained with a minimal memory footprint of 347 kB flash and 23 kB RAM, showcasing the system's suitability for wearable embedded devices. Furthermore, a custom PCB was developed to validate the system in a real-world scenario. The hardware integrates high-performance electronics with low power consumption, demonstrating the feasibility of deploying Edge-AI for non-invasive, real-time diabetes detection in resource-constrained environments. This design represents a significant step forward in improving the accessibility and practicality of diabetes monitoring.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering