Advancements in Bone Replacement Techniques-Potential Uses After Maxillary and Mandibular Resections Due to Medication-Related Osteonecrosis of the Jaw (MRONJ).
Judit Bovari-Biri, Judith A Miskei, Zsanett Kover, Alexandra Steinerbrunner-Nagy, Kinga Kardos, Peter Maroti, Judit E Pongracz
{"title":"Advancements in Bone Replacement Techniques-Potential Uses After Maxillary and Mandibular Resections Due to Medication-Related Osteonecrosis of the Jaw (MRONJ).","authors":"Judit Bovari-Biri, Judith A Miskei, Zsanett Kover, Alexandra Steinerbrunner-Nagy, Kinga Kardos, Peter Maroti, Judit E Pongracz","doi":"10.3390/cells14020145","DOIUrl":null,"url":null,"abstract":"<p><p>Maxillofacial bone defects can have a profound impact on both facial function and aesthetics. While various biomaterial scaffolds have shown promise in addressing these challenges, regenerating bone in this region remains complex due to its irregular shape, intricate structure, and differing cellular origins compared to other bones in the human body. Moreover, the significant and variable mechanical loads placed on the maxillofacial bones add further complexity, especially in cases of difficult-to-treat medical conditions. This review provides a brief overview of medication-related osteonecrosis of the jaw (MRONJ), highlighting the medication-induced adverse reactions and the associated clinical challenges in treating this condition. The purpose of this manuscript is to emphasize the role of biotechnology and tissue engineering technologies in therapy. By using scaffold materials and biofactors in combination with autologous cells, innovative solutions are explored for the repair of damaged facial bones. The ongoing search for effective scaffolds that can address these challenges and improve in vitro bone preparation for subsequent regeneration in the maxillofacial region remains critical. The primary purpose of this review is to spotlight current research trends and novel approaches in this area.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763601/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14020145","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Maxillofacial bone defects can have a profound impact on both facial function and aesthetics. While various biomaterial scaffolds have shown promise in addressing these challenges, regenerating bone in this region remains complex due to its irregular shape, intricate structure, and differing cellular origins compared to other bones in the human body. Moreover, the significant and variable mechanical loads placed on the maxillofacial bones add further complexity, especially in cases of difficult-to-treat medical conditions. This review provides a brief overview of medication-related osteonecrosis of the jaw (MRONJ), highlighting the medication-induced adverse reactions and the associated clinical challenges in treating this condition. The purpose of this manuscript is to emphasize the role of biotechnology and tissue engineering technologies in therapy. By using scaffold materials and biofactors in combination with autologous cells, innovative solutions are explored for the repair of damaged facial bones. The ongoing search for effective scaffolds that can address these challenges and improve in vitro bone preparation for subsequent regeneration in the maxillofacial region remains critical. The primary purpose of this review is to spotlight current research trends and novel approaches in this area.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.