Caroline Soulet, Jordi Josa-Castro, María Moriel-Carretero
{"title":"Neutral lipids restrict the mobility of broken DNA molecules during comet assays.","authors":"Caroline Soulet, Jordi Josa-Castro, María Moriel-Carretero","doi":"10.1111/boc.202400141","DOIUrl":null,"url":null,"abstract":"<p><p>One widespread technique to assess in relative terms the amount of broken DNA present in the genome of individual cells consists of immobilizing the cell's nucleus under an agarose pad (called the nucleoid) and subjecting the whole genome to electrophoresis to force broken DNA molecules out of it. Since the migrating broken DNA molecules create a tail behind the nucleoid, this technique is named the comet assay. While performing comet assays regularly, we systematically observed circular regions devoid of DNA within the nucleoid region. We characterize here that these correspond to clusters of neutral (apolar) lipids, since they could be labeled with neutral lipid-dying molecules, increased when cells were fed with oleic acid, and were irresponsive to the electrophoretic field. Of relevance, de-lipidation assays, either in vivo, or in vitro using acetone, show that these neutral lipids (NL) within the nucleoid limit the ability of broken DNA molecules to migrate into the comet tail. From a technical point of view, we show that de-lipidation permits a wider range for the detection of broken DNA molecules. Biologically, we put forward the notion that NL in contact with DNA may locally exert regulatory functions within the cell's nucleus.</p>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"117 1","pages":"e2400141"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758471/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/boc.202400141","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One widespread technique to assess in relative terms the amount of broken DNA present in the genome of individual cells consists of immobilizing the cell's nucleus under an agarose pad (called the nucleoid) and subjecting the whole genome to electrophoresis to force broken DNA molecules out of it. Since the migrating broken DNA molecules create a tail behind the nucleoid, this technique is named the comet assay. While performing comet assays regularly, we systematically observed circular regions devoid of DNA within the nucleoid region. We characterize here that these correspond to clusters of neutral (apolar) lipids, since they could be labeled with neutral lipid-dying molecules, increased when cells were fed with oleic acid, and were irresponsive to the electrophoretic field. Of relevance, de-lipidation assays, either in vivo, or in vitro using acetone, show that these neutral lipids (NL) within the nucleoid limit the ability of broken DNA molecules to migrate into the comet tail. From a technical point of view, we show that de-lipidation permits a wider range for the detection of broken DNA molecules. Biologically, we put forward the notion that NL in contact with DNA may locally exert regulatory functions within the cell's nucleus.
期刊介绍:
The journal publishes original research articles and reviews on all aspects of cellular, molecular and structural biology, developmental biology, cell physiology and evolution. It will publish articles or reviews contributing to the understanding of the elementary biochemical and biophysical principles of live matter organization from the molecular, cellular and tissues scales and organisms.
This includes contributions directed towards understanding biochemical and biophysical mechanisms, structure-function relationships with respect to basic cell and tissue functions, development, development/evolution relationship, morphogenesis, stem cell biology, cell biology of disease, plant cell biology, as well as contributions directed toward understanding integrated processes at the organelles, cell and tissue levels. Contributions using approaches such as high resolution imaging, live imaging, quantitative cell biology and integrated biology; as well as those using innovative genetic and epigenetic technologies, ex-vivo tissue engineering, cellular, tissue and integrated functional analysis, and quantitative biology and modeling to demonstrate original biological principles are encouraged.