Kunkun Zhao, Jingjing Zhang, Yi Fan, Xufa Du, Shuliang Zhu, Zhongfeng Li, Ding Qiu, Zenghui Cao, Qian Ma, Yaoyao Li, Di Cao, Sasa Hu, Kai Zhao, Fangping Gong, Rui Ren, Xingli Ma, Xingguo Zhang, Dongmei Yin
{"title":"PSC1, a basic/helix-loop-helix transcription factor controlling the purplish-red testa trait in peanut.","authors":"Kunkun Zhao, Jingjing Zhang, Yi Fan, Xufa Du, Shuliang Zhu, Zhongfeng Li, Ding Qiu, Zenghui Cao, Qian Ma, Yaoyao Li, Di Cao, Sasa Hu, Kai Zhao, Fangping Gong, Rui Ren, Xingli Ma, Xingguo Zhang, Dongmei Yin","doi":"10.1111/jipb.13847","DOIUrl":null,"url":null,"abstract":"<p><p>Seed color is a key agronomic trait in crops such as peanut, where it is a vital indicator of both nutritional and commercial value. In recent years, peanuts with darker seed coats have gained market attention due to their high anthocyanin content. Here, we used bulk segregant analysis to identify the gene associated with the purplish-red coat trait and identified a novel gene encoding a basic/helix-loop-helix transcription factor, PURPLE RED SEED COAT1 (PSC1), which regulates the accumulation of anthocyanins in the seed coat. Specifically, we found that a 35-bp insertion in the PSC1 promoter increased the abundance of PSC1 mRNA. Transcriptomic and metabolomic analyses indicated that the purplish-red color of the seed coat was the result of decreased expression of anthocyanidin reductase (ANR), leading to increased accumulation of delphinidin, cyanidin, and pelargonidin derivatives. Further analysis revealed that PSC1 interacts with AhMYB7 to form a complex that specifically binds to the ANR promoter to suppress its expression, resulting in increased anthocyanin accumulation. Moreover, overexpression of PSC1 increased anthocyanin content in Arabidopsis thaliana and peanut callus. Our study reveals a new gene that controls seed coat color by regulating anthocyanin metabolism and provides a valuable genetic resource for breeding peanuts with a purplish-red seed coat.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13847","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Seed color is a key agronomic trait in crops such as peanut, where it is a vital indicator of both nutritional and commercial value. In recent years, peanuts with darker seed coats have gained market attention due to their high anthocyanin content. Here, we used bulk segregant analysis to identify the gene associated with the purplish-red coat trait and identified a novel gene encoding a basic/helix-loop-helix transcription factor, PURPLE RED SEED COAT1 (PSC1), which regulates the accumulation of anthocyanins in the seed coat. Specifically, we found that a 35-bp insertion in the PSC1 promoter increased the abundance of PSC1 mRNA. Transcriptomic and metabolomic analyses indicated that the purplish-red color of the seed coat was the result of decreased expression of anthocyanidin reductase (ANR), leading to increased accumulation of delphinidin, cyanidin, and pelargonidin derivatives. Further analysis revealed that PSC1 interacts with AhMYB7 to form a complex that specifically binds to the ANR promoter to suppress its expression, resulting in increased anthocyanin accumulation. Moreover, overexpression of PSC1 increased anthocyanin content in Arabidopsis thaliana and peanut callus. Our study reveals a new gene that controls seed coat color by regulating anthocyanin metabolism and provides a valuable genetic resource for breeding peanuts with a purplish-red seed coat.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.