Deep-Learning Generated Synthetic Material Decomposition Images Based on Single-Energy CT to Differentiate Intracranial Hemorrhage and Contrast Staining Within 24 Hours After Endovascular Thrombectomy

IF 4.8 1区 医学 Q1 NEUROSCIENCES
Tianyu Wang, Caiwen Jiang, Weili Ding, Qing Chen, Dinggang Shen, Zhongxiang Ding
{"title":"Deep-Learning Generated Synthetic Material Decomposition Images Based on Single-Energy CT to Differentiate Intracranial Hemorrhage and Contrast Staining Within 24 Hours After Endovascular Thrombectomy","authors":"Tianyu Wang,&nbsp;Caiwen Jiang,&nbsp;Weili Ding,&nbsp;Qing Chen,&nbsp;Dinggang Shen,&nbsp;Zhongxiang Ding","doi":"10.1111/cns.70235","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>To develop a transformer-based generative adversarial network (trans-GAN) that can generate synthetic material decomposition images from single-energy CT (SECT) for real-time detection of intracranial hemorrhage (ICH) after endovascular thrombectomy.</p>\n </section>\n \n <section>\n \n <h3> Materials</h3>\n \n <p>We retrospectively collected data from two hospitals, consisting of 237 dual-energy CT (DECT) scans, including matched iodine overlay maps, virtual noncontrast, and simulated SECT images. These scans were randomly divided into a training set (<i>n</i> = 190) and an internal validation set (<i>n</i> = 47) in a 4:1 ratio based on the proportion of ICH. Additionally, 26 SECT scans were included as an external validation set. We compared our trans-GAN with state-of-the-art generation methods using several physical metrics of the generated images and evaluated the diagnostic efficacy of the generated images for differentiating ICH from contrast staining.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In comparison with other generation methods, the images generated by trans-GAN exhibited superior quantitative performance. Meanwhile, in terms of ICH detection, the use of generated images from both the internal and external validation sets resulted in a higher area under the receiver operating characteristic curve (0.88 vs. 0.68 and 0.69 vs. 0.54, respectively) and kappa values (0.83 vs. 0.56 and 0.51 vs. 0.31, respectively) compared with input SECT images.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our proposed trans-GAN provides a new approach based on SECT for real-time differentiation of ICH and contrast staining in hospitals without DECT conditions.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70235","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

To develop a transformer-based generative adversarial network (trans-GAN) that can generate synthetic material decomposition images from single-energy CT (SECT) for real-time detection of intracranial hemorrhage (ICH) after endovascular thrombectomy.

Materials

We retrospectively collected data from two hospitals, consisting of 237 dual-energy CT (DECT) scans, including matched iodine overlay maps, virtual noncontrast, and simulated SECT images. These scans were randomly divided into a training set (n = 190) and an internal validation set (n = 47) in a 4:1 ratio based on the proportion of ICH. Additionally, 26 SECT scans were included as an external validation set. We compared our trans-GAN with state-of-the-art generation methods using several physical metrics of the generated images and evaluated the diagnostic efficacy of the generated images for differentiating ICH from contrast staining.

Results

In comparison with other generation methods, the images generated by trans-GAN exhibited superior quantitative performance. Meanwhile, in terms of ICH detection, the use of generated images from both the internal and external validation sets resulted in a higher area under the receiver operating characteristic curve (0.88 vs. 0.68 and 0.69 vs. 0.54, respectively) and kappa values (0.83 vs. 0.56 and 0.51 vs. 0.31, respectively) compared with input SECT images.

Conclusion

Our proposed trans-GAN provides a new approach based on SECT for real-time differentiation of ICH and contrast staining in hospitals without DECT conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CNS Neuroscience & Therapeutics
CNS Neuroscience & Therapeutics 医学-神经科学
CiteScore
7.30
自引率
12.70%
发文量
240
审稿时长
2 months
期刊介绍: CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信