The Innate Immune Sensor Zbp1 Mediates Central Nervous System Inflammation Induced by Angiostrongylus Cantonensis by Promoting Macrophage Inflammatory Phenotypes.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongli Zhou, Minyu Zhou, XiPing Liao, Liangyu Zhang, Hang Wei, Yuting Lu, Yiqing Zhang, Hui Huang, Yue Hu, Tao Chen, Zhiyue Lv
{"title":"The Innate Immune Sensor Zbp1 Mediates Central Nervous System Inflammation Induced by Angiostrongylus Cantonensis by Promoting Macrophage Inflammatory Phenotypes.","authors":"Hongli Zhou, Minyu Zhou, XiPing Liao, Liangyu Zhang, Hang Wei, Yuting Lu, Yiqing Zhang, Hui Huang, Yue Hu, Tao Chen, Zhiyue Lv","doi":"10.1002/advs.202413675","DOIUrl":null,"url":null,"abstract":"<p><p>Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant. RNA-seq and SMART-seq analysis of pattern recognition receptor (PRR) and DNA sensor gene sets revealed a marked increase in Z-DNA binding protein 1 (Zbp1) expression in infected mice. Confocal microscopy, RT-qPCR, western blotting, and immunohistochemistry further confirmed that Zbp1 is specifically upregulated in macrophages and microglia. Using Zbp1-knockout mice and flow cytometry, it is found that knockout of Zbp1 enhanced lymphocyte infiltration and natural killer cell cytotoxicity, modulating the immune microenvironment in the central nervous system (CNS) during AC infection. Mechanistically, it is revealed that in macrophage Zbp1 directly binds to receptor-interacting protein 3 (RIP3) to promote its phosphorylation, subsequently facilitating the phosphorylation of mixed lineage kinase domain-like protein (Mlkl). The activated Zbp1-pRIP3-pMlkl axis leads to necroptosis and upregulates pro-inflammatory cytokines including TNF-α, IL-1α, CXCL9, CXCL10 in macrophages, which recruits and activates immune cells. These findings offer new insights into the pathogenic mechanisms of angiostrongyliasis and suggest potential therapeutic strategies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413675"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413675","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant. RNA-seq and SMART-seq analysis of pattern recognition receptor (PRR) and DNA sensor gene sets revealed a marked increase in Z-DNA binding protein 1 (Zbp1) expression in infected mice. Confocal microscopy, RT-qPCR, western blotting, and immunohistochemistry further confirmed that Zbp1 is specifically upregulated in macrophages and microglia. Using Zbp1-knockout mice and flow cytometry, it is found that knockout of Zbp1 enhanced lymphocyte infiltration and natural killer cell cytotoxicity, modulating the immune microenvironment in the central nervous system (CNS) during AC infection. Mechanistically, it is revealed that in macrophage Zbp1 directly binds to receptor-interacting protein 3 (RIP3) to promote its phosphorylation, subsequently facilitating the phosphorylation of mixed lineage kinase domain-like protein (Mlkl). The activated Zbp1-pRIP3-pMlkl axis leads to necroptosis and upregulates pro-inflammatory cytokines including TNF-α, IL-1α, CXCL9, CXCL10 in macrophages, which recruits and activates immune cells. These findings offer new insights into the pathogenic mechanisms of angiostrongyliasis and suggest potential therapeutic strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信