Carlos Cruz-Cortés, Eli Fernández-de Gortari, Rodrigo Aguayo-Ortiz, Jaroslava Šeflová, Adam Ard, Martin Clasby, Justus Anumonwo, L Michel Espinoza-Fonseca
{"title":"Machine Learning-Driven Discovery of Structurally Related Natural Products as Activators of the Cardiac Calcium Pump SERCA2a.","authors":"Carlos Cruz-Cortés, Eli Fernández-de Gortari, Rodrigo Aguayo-Ortiz, Jaroslava Šeflová, Adam Ard, Martin Clasby, Justus Anumonwo, L Michel Espinoza-Fonseca","doi":"10.1002/cmdc.202400913","DOIUrl":null,"url":null,"abstract":"<p><p>A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca<sup>2+</sup>-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated target and an attractive therapeutic approach for heart failure therapy. However, finding small-molecule SERCA2a activators is challenging. In this study, we used a machine learning-based virtual screening to identify SERCA2a activators among 57,423 natural products. The machine learning model identified ten structurally related natural products from Zingiber officinale, Aframomum melegueta, Alpinia officinarum, Alpinia oxyphylla, and Capsicum (chili peppers) as SERCA2a activators. Initial ATPase assays showed seven of these activate SERCA at low micromolar concentrations. Notably, two natural products, Yakuchinone A and Alpinoid D displayed robust concentration-dependent responses in primary ATPase activity assays, efficient lipid bilayer binding and permeation in atomistic simulations, and enhanced intracellular Ca<sup>2+</sup> transport in adult mouse cardiac cells. While these natural products exert off-target effects on Ca<sup>2+</sup> signaling, these compounds offer promising avenues for the design and optimization of lead compounds. In conclusion, this study increases the array of calcium pump effectors and provides new scaffolds for the development of novel SERCA2a activators as new therapies for heart failure.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400913"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400913","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated target and an attractive therapeutic approach for heart failure therapy. However, finding small-molecule SERCA2a activators is challenging. In this study, we used a machine learning-based virtual screening to identify SERCA2a activators among 57,423 natural products. The machine learning model identified ten structurally related natural products from Zingiber officinale, Aframomum melegueta, Alpinia officinarum, Alpinia oxyphylla, and Capsicum (chili peppers) as SERCA2a activators. Initial ATPase assays showed seven of these activate SERCA at low micromolar concentrations. Notably, two natural products, Yakuchinone A and Alpinoid D displayed robust concentration-dependent responses in primary ATPase activity assays, efficient lipid bilayer binding and permeation in atomistic simulations, and enhanced intracellular Ca2+ transport in adult mouse cardiac cells. While these natural products exert off-target effects on Ca2+ signaling, these compounds offer promising avenues for the design and optimization of lead compounds. In conclusion, this study increases the array of calcium pump effectors and provides new scaffolds for the development of novel SERCA2a activators as new therapies for heart failure.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.