Parametric Design and Mechanical Characterization of a Selective Laser Sintering Additively Manufactured Biomimetic Ribbed Dome Inspired by the Chorion of Lepidopteran Eggs.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Alexandros Efstathiadis, Ioanna Symeonidou, Emmanouil K Tzimtzimis, Dimitrios Avtzis, Konstantinos Tsongas, Dimitrios Tzetzis
{"title":"Parametric Design and Mechanical Characterization of a Selective Laser Sintering Additively Manufactured Biomimetic Ribbed Dome Inspired by the Chorion of Lepidopteran Eggs.","authors":"Alexandros Efstathiadis, Ioanna Symeonidou, Emmanouil K Tzimtzimis, Dimitrios Avtzis, Konstantinos Tsongas, Dimitrios Tzetzis","doi":"10.3390/biomimetics10010001","DOIUrl":null,"url":null,"abstract":"<p><p>The current research aims to analyze the shape and structural features of the eggs of the lepidoptera species <i>Melitaea</i> sp. (Lepidoptera, Nympalidae) and develop design solutions through the implementation of a novel strategy of biomimetic design. Scanning electron microscopy (SEM) analysis of the chorion reveals a medial zone that forms an arachnoid grid resembling a ribbed dome with convex longitudinal ribs and concave transverse ring members. A parametric design algorithm was created with the aid of computer-aided design (CAD) software Rhinoceros 3D and Grasshopper3D in order to abstract and emulate the biological model. A series of physical models were manufactured with variations in geometric parameters like the number of ribs and rings, their thickness, and curvature. Selective laser sintering (SLS) technology and Polyamide12 (nylon) material were utilized for the prototyping process. Quasi-static compression testing was carried out in conjunction with finite element analysis (FEA) to investigate the deformation patterns and stress dispersion of the models. The biomimetic ribbed dome appears to significantly dampen the snap-through behavior that is observed in typical solid and lattice domes, decreasing dynamic stresses developed during the response and preventing catastrophic failure of the structure. Increasing the curvature of the ring segments further reduces the snap-through phenomenon and improves the overall strength. However, excessive curvature has a negative effect on the maximum sustained load. Increasing the number and thickness of the transverse rings and the number of the longitudinal ribs also increases the strength of the dome. However, excessive increase in the rib radius leads to more acute snap-through behavior and an earlier failure. The above results were validated using respective finite element analyses.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The current research aims to analyze the shape and structural features of the eggs of the lepidoptera species Melitaea sp. (Lepidoptera, Nympalidae) and develop design solutions through the implementation of a novel strategy of biomimetic design. Scanning electron microscopy (SEM) analysis of the chorion reveals a medial zone that forms an arachnoid grid resembling a ribbed dome with convex longitudinal ribs and concave transverse ring members. A parametric design algorithm was created with the aid of computer-aided design (CAD) software Rhinoceros 3D and Grasshopper3D in order to abstract and emulate the biological model. A series of physical models were manufactured with variations in geometric parameters like the number of ribs and rings, their thickness, and curvature. Selective laser sintering (SLS) technology and Polyamide12 (nylon) material were utilized for the prototyping process. Quasi-static compression testing was carried out in conjunction with finite element analysis (FEA) to investigate the deformation patterns and stress dispersion of the models. The biomimetic ribbed dome appears to significantly dampen the snap-through behavior that is observed in typical solid and lattice domes, decreasing dynamic stresses developed during the response and preventing catastrophic failure of the structure. Increasing the curvature of the ring segments further reduces the snap-through phenomenon and improves the overall strength. However, excessive curvature has a negative effect on the maximum sustained load. Increasing the number and thickness of the transverse rings and the number of the longitudinal ribs also increases the strength of the dome. However, excessive increase in the rib radius leads to more acute snap-through behavior and an earlier failure. The above results were validated using respective finite element analyses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信