Neurophysiological and Cognitive Changes Induced by the Acute Head-Down Tilt.

IF 0.9 4区 医学 Q4 BIOPHYSICS
Monika Sharma, Savita Gaur, Harsh Pawar, Neha Yadav, Bhanuteja Thondala, Sanjeev Kumar, Krishna Kishore, Koushik Ray, Usha Panjwani
{"title":"Neurophysiological and Cognitive Changes Induced by the Acute Head-Down Tilt.","authors":"Monika Sharma, Savita Gaur, Harsh Pawar, Neha Yadav, Bhanuteja Thondala, Sanjeev Kumar, Krishna Kishore, Koushik Ray, Usha Panjwani","doi":"10.3357/AMHP.6282.2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In space, under weightlessness conditions, human brain activity is changed due to the shifting of body fluid and blood toward the cephalic region. This shifting leads to changes in cerebral hemodynamics and, consequently, neurophysiological function, which impacts mental functions like cognition and decision-making capabilities of space travelers. The present study reports the effect of acute exposure to simulated microgravity on cognitive functions and event-related potentials.</p><p><strong>Methods: </strong>There were 18 healthy human subjects who participated in a 1-h 6° head-down tilt (HDT) bed rest to simulate physiological conditions during microgravity. Subjects were instructed to perform event-related potential tasks and cognitive tasks with a simulator sickness questionnaire to evaluate their performance, attention, and alertness during weightlessness, at baseline, after microgravity exposure, and after a recovery of 30 min.</p><p><strong>Results: </strong>A significant change was found in the latency of P300 as compared to the baseline. The amplitude of the P300 wave was changed during HDT. The mean reaction time of contingent negative variation increased significantly as compared to the baseline. A significant increase in choice reaction time was observed during HDT vs. baseline. The values recovered partially after 30 min of exposure.</p><p><strong>Discussion: </strong>It was concluded that simulated microgravity impacts mental functions as evidenced by alterations in choice reaction time and event-related potential latencies and reaction time. The study has applied value for understanding neurophysiological responses and optimization of cognitive performance in space conditions. Sharma M, Gaur S, Pawar H, Yadav N, Thondala B, Kumar S, Kishore K, Ray K, Panjwani U. Neurophysiological and cognitive changes induced by the acute head-down tilt. Aerosp Med Hum Perform. 2025; 96(1):45-52.</p>","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"96 1","pages":"45-52"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace medicine and human performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3357/AMHP.6282.2024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: In space, under weightlessness conditions, human brain activity is changed due to the shifting of body fluid and blood toward the cephalic region. This shifting leads to changes in cerebral hemodynamics and, consequently, neurophysiological function, which impacts mental functions like cognition and decision-making capabilities of space travelers. The present study reports the effect of acute exposure to simulated microgravity on cognitive functions and event-related potentials.

Methods: There were 18 healthy human subjects who participated in a 1-h 6° head-down tilt (HDT) bed rest to simulate physiological conditions during microgravity. Subjects were instructed to perform event-related potential tasks and cognitive tasks with a simulator sickness questionnaire to evaluate their performance, attention, and alertness during weightlessness, at baseline, after microgravity exposure, and after a recovery of 30 min.

Results: A significant change was found in the latency of P300 as compared to the baseline. The amplitude of the P300 wave was changed during HDT. The mean reaction time of contingent negative variation increased significantly as compared to the baseline. A significant increase in choice reaction time was observed during HDT vs. baseline. The values recovered partially after 30 min of exposure.

Discussion: It was concluded that simulated microgravity impacts mental functions as evidenced by alterations in choice reaction time and event-related potential latencies and reaction time. The study has applied value for understanding neurophysiological responses and optimization of cognitive performance in space conditions. Sharma M, Gaur S, Pawar H, Yadav N, Thondala B, Kumar S, Kishore K, Ray K, Panjwani U. Neurophysiological and cognitive changes induced by the acute head-down tilt. Aerosp Med Hum Perform. 2025; 96(1):45-52.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace medicine and human performance
Aerospace medicine and human performance PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH -MEDICINE, GENERAL & INTERNAL
CiteScore
1.10
自引率
22.20%
发文量
272
期刊介绍: The peer-reviewed monthly journal, Aerospace Medicine and Human Performance (AMHP), formerly Aviation, Space, and Environmental Medicine, provides contact with physicians, life scientists, bioengineers, and medical specialists working in both basic medical research and in its clinical applications. It is the most used and cited journal in its field. It is distributed to more than 80 nations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信