Operando Synchrotron X-Ray Absorption Spectroscopy: A Key Tool for Cathode Material Studies in Next-Generation Batteries.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yameng Fan, Xin Wang, Guyue Bo, Xun Xu, Khay Wai See, Bernt Johannessen, Wei Kong Pang
{"title":"Operando Synchrotron X-Ray Absorption Spectroscopy: A Key Tool for Cathode Material Studies in Next-Generation Batteries.","authors":"Yameng Fan, Xin Wang, Guyue Bo, Xun Xu, Khay Wai See, Bernt Johannessen, Wei Kong Pang","doi":"10.1002/advs.202414480","DOIUrl":null,"url":null,"abstract":"<p><p>Rechargeable batteries are central to modern energy storage systems, from portable electronics to electric vehicles. The cathode material, a critical component, largely dictates a battery's energy density, capacity, and overall performance. This review focuses on the application of operando X-ray absorption spectroscopy (XAS) to study cathode materials in Li-ion, Na-ion, Li-S, and Na-S batteries. Operando XAS provides real-time insights into the local electronic structure, oxidation states, and coordination environments, which are crucial for understanding complex electrochemical processes, such as redox reactions, phase transitions, and structural degradation. The review highlights the strengths of hard and soft XAS techniques in probing transition metal (TM) and anionic redox processes, particularly in layered oxide cathodes, where reversible oxygen redox and TM behavior are pivotal. The role of operando XAS is also explored in analyzing conversion-type S-based cathodes, where it helps unravel the intricate reaction mechanisms. Furthermore, the review addresses the challenges of in situ cell design for operando XAS, especially under ultrahigh vacuum conditions for soft XAS. By discussing recent advancements and future directions, this review underscores the critical role of operando XAS in driving innovation and improving the design and performance of next-generation battery technologies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2414480"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202414480","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable batteries are central to modern energy storage systems, from portable electronics to electric vehicles. The cathode material, a critical component, largely dictates a battery's energy density, capacity, and overall performance. This review focuses on the application of operando X-ray absorption spectroscopy (XAS) to study cathode materials in Li-ion, Na-ion, Li-S, and Na-S batteries. Operando XAS provides real-time insights into the local electronic structure, oxidation states, and coordination environments, which are crucial for understanding complex electrochemical processes, such as redox reactions, phase transitions, and structural degradation. The review highlights the strengths of hard and soft XAS techniques in probing transition metal (TM) and anionic redox processes, particularly in layered oxide cathodes, where reversible oxygen redox and TM behavior are pivotal. The role of operando XAS is also explored in analyzing conversion-type S-based cathodes, where it helps unravel the intricate reaction mechanisms. Furthermore, the review addresses the challenges of in situ cell design for operando XAS, especially under ultrahigh vacuum conditions for soft XAS. By discussing recent advancements and future directions, this review underscores the critical role of operando XAS in driving innovation and improving the design and performance of next-generation battery technologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信